243 research outputs found

    The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum

    Get PDF
    Ryk (receptor related to tyrosine kinase) has been shown to be a novel Wnt receptor in both Caenorhabditis elegans and Drosophila melanogaster. Recently, Ryk-Wnt interactions were shown to guide corticospinal axons down the embryonic mouse spinal cord. Here we show that, in Ryk-deficient mice, cortical axons project aberrantly across the major forebrain commissure, the corpus callosum. Many mouse mutants have been described in which loss-of-function mutations result in the inability of callosal axons to cross the midline, thereby forming Probst bundles on the ipsilateral side. In contrast, loss of Ryk does not interfere with the ability of callosal axons to cross the midline but impedes their escape from the midline into the contralateral side. Therefore, Ryk(-/-) mice display a novel callosal guidance phenotype. We also show that Wnt5a acts as a chemorepulsive ligand for Ryk, driving callosal axons toward the contralateral hemisphere after crossing the midline. In addition, whereas callosal axons do cross the midline in Ryk(-/-) embryos, they are defasciculated on the ipsilateral side, indicating that Ryk also promotes fasciculation of axons before midline crossing. In summary, this study expands the emerging role for Wnts in axon guidance and identifies Ryk as a key guidance receptor in the establishment of the corpus callosum. Our analysis of Ryk function further advances our understanding of the molecular mechanisms underlying the formation of this important commissure

    Targeting lymphangiogenesis to prevent tumour metastasis

    Get PDF
    Recent studies involving animal models of cancer and clinicopathological analyses of human tumours suggest that the growth of lymphatic vessels (lymphangiogenesis) in or nearby tumours is associated with the metastatic spread of cancer. The best validated molecular signalling system for tumour lymphangiogenesis involves the secreted proteins vascular endothelial growth factor-C (VEGF-C) and VEGF-D that induce growth of lymphatic vessels via activation of VEGF receptor-3 (VEGFR-3) localised on the surface of lymphatic endothelial cells. In this review, we discuss the evidence supporting a role for this signalling system in the spread of cancer and potential approaches for blocking this system to prevent tumour metastasis

    Network development in biological gels: role in lymphatic vessel development

    Get PDF
    In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801–808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn–Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model

    No common denominator for breast cancer lymph node metastasis

    Get PDF
    The axillary lymph node status is the most powerful prognostic factor for breast cancer patients to date. The molecular mechanisms that control lymph node metastasis, however, remain poorly understood. To define patterns of genes or gene regulatory pathways that drive breast cancer lymph node metastasis, we compared the gene expression profiles of 15 primary breast carcinomas and their matching lymph node metastases using microarrays. In general, primary breast carcinomas and lymph node metastases do not differ at the transcriptional level by a common subset of genes. No classifier or single gene discriminating the group of primary tumours from those of the lymph node metastases could be identified. Also, in a series of 295 breast tumours, no classifier predicting lymph node metastasis could be developed. However, subtle differences in the expression of genes involved in extracellular-matrix organisation and growth factor signalling are detected in individual pairs of matching primary and metastatic tumours. Surprisingly, however, different sets of these genes are either up- or downregulated in lymph node metastases. Our data suggest that breast carcinomas do not use a shared gene set to accomplish lymph node metastasis

    Phage-Derived Fully Human Monoclonal Antibody Fragments to Human Vascular Endothelial Growth Factor-C Block Its Interaction with VEGF Receptor-2 and 3

    Get PDF
    Vascular endothelial growth factor C (VEGF-C) is a key mediator of lymphangiogenesis, acting via its receptors VEGF-R2 and VEGF-R3. High expression of VEGF-C in tumors correlates with increased lymphatic vessel density, lymphatic vessel invasion, sentinel lymph node metastasis and poor prognosis. Recently, we found that in a chemically induced skin carcinoma model, increased VEGF-C drainage from the tumor enhanced lymphangiogenesis in the sentinel lymph node and facilitated metastatic spread of cancer cells via the lymphatics. Hence, interference with the VEGF-C/VEGF-R3 axis holds promise to block metastatic spread, as recently shown by use of a neutralizing anti-VEGF-R3 antibody and a soluble VEGF-R3 (VEGF-C/D trap). By antibody phage-display, we have developed a human monoclonal antibody fragment (single-chain Fragment variable, scFv) that binds with high specificity and affinity to the fully processed mature form of human VEGF-C. The scFv binds to an epitope on VEGF-C that is important for receptor binding, since binding of the scFv to VEGF-C dose-dependently inhibits the binding of VEGF-C to VEGF-R2 and VEGF-R3 as shown by BIAcore and ELISA analyses. Interestingly, the variable heavy domain (VH) of the anti-VEGF-C scFv, which contains a mutation typical for camelid heavy chain-only antibodies, is sufficient for binding VEGF-C. This reduced the size of the potentially VEGF-C-blocking antibody fragment to only 14.6 kDa. Anti-VEGF-C VH-based immunoproteins hold promise to block the lymphangiogenic activity of VEGF-C, which would present a significant advance in inhibiting lymphatic-based metastatic spread of certain cancer types
    • …
    corecore