10,938 research outputs found
Sequence composition and environment effects on residue fluctuations in protein structures
The spectrum and scale of fluctuations in protein structures affect the range
of cell phenomena, including stability of protein structures or their
fragments, allosteric transitions and energy transfer. The study presents a
statistical-thermodynamic analysis of relationship between the sequence
composition and the distribution of residue fluctuations in protein-protein
complexes. A one-node-per residue elastic network model accounting for the
nonhomogeneous protein mass distribution and the inter-atomic interactions
through the renormalized inter-residue potential is developed. Two factors, a
protein mass distribution and a residue environment, were found to determine
the scale of residue fluctuations. Surface residues undergo larger fluctuations
than core residues, showing agreement with experimental observations. Ranking
residues over the normalized scale of fluctuations yields a distinct
classification of amino acids into three groups. The structural instability in
proteins possibly relates to the high content of the highly fluctuating
residues and a deficiency of the weakly fluctuating residues in irregular
secondary structure elements (loops), chameleon sequences and disordered
proteins. Strong correlation between residue fluctuations and the sequence
composition of protein loops supports this hypothesis. Comparing fluctuations
of binding site residues (interface residues) with other surface residues shows
that, on average, the interface is more rigid than the rest of the protein
surface and Gly, Ala, Ser, Cys, Leu and Trp have a propensity to form more
stable docking patches on the interface. The findings have broad implications
for understanding mechanisms of protein association and stability of protein
structures.Comment: 8 pages, 4 figure
Cumulant expansion of the periodic Anderson model in infinite dimension
The diagrammatic cumulant expansion for the periodic Anderson model with
infinite Coulomb repulsion () is considered here for an hypercubic
lattice of infinite dimension (). The same type of simplifications
obtained by Metzner for the cumulant expansion of the Hubbard model in the
limit of , are shown to be also valid for the periodic Anderson
model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical
and General (1997
Slow-string limit and "antiferromagnetic" state in AdS/CFT
We discuss a slow-moving limit of a rigid circular equal-spin solution on R x
S^3. We suggest that the solution with the winding number equal to the total
spin approximates the quantum string state dual to the maximal-dimension
``antiferromagnetic'' state of the SU(2) spin chain on the gauge theory side.
An expansion of the string action near this solution leads to a weakly coupled
system of a sine-Gordon model and a free field. We show that a similar
effective Hamiltonian appears in a certain continuum limit from the half-filled
Hubbard model that was recently suggested to describe the all-order dilatation
operator of the dual gauge theory in the SU(2) sector. We also discuss some
other slow-string solutions with one spin component in AdS_5 and one in S^5.Comment: 32 pages, Latex v2: one footnote and references adde
Breadboard stellar tracker system test report, volume 1
The performance of a star tracker equipped with a focal plane detector was evaluated. The CID board is an array of 256 x 256 pixels which are 20 x 20 micrometers in dimension. The tracker used for test was a breadboard tracker system developed by BASD. Unique acquisition and tracking algorithms are employed to enhance performance. A pattern recognition process is used to test for proper image spread function and to avoid false acquisition on noise. A very linear, high gain, interpixel transfer function is derived for interpolating star position. The lens used in the tracker has an EFL of 100 mm. The tracker has an FOV of 2.93 degrees resulting in a pixel angular subtense of 41.253 arc sec in each axis. The test procedure used for the program presented a star to the tracker in a circular pattern of positions; the pattern was formed by projecting a simulated star through a rotatable deviation wedge. Further tests determined readout noise, Noise Equivalent Displacement during track, and spatial noise during acquisition by taking related data and reducing it
The influence of local field corrections on Thomson scattering in non-ideal two-component plasmas
Thomson scattering in non-ideal (collision-dominated) two-component plasmas
is calculated accounting for electron-ion collisions as well as
electron-electron correlations. This is achieved by using a novel interpolation
scheme for the electron-electron response function generalizing the traditional
Mermin approach. Also, ions are treated as randomly distributed inert
scattering centers. The collision frequency is taken as a dynamic and complex
quantity and is calculated from a microscopic quantum-statistical approach.
Implications due to different approximations for the electron-electron
correlation, i.e. different forms of the OCP local field correction, are
discussed
Buoyancy waves in Pluto's high atmosphere: Implications for stellar occultations
We apply scintillation theory to stellar signal fluctuations in the
high-resolution, high signal/noise, dual-wavelength data from the MMT
observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined
high wavenumber cutoff in the fluctuations is consistent with viscous-thermal
dissipation of buoyancy waves (internal gravity waves) in Pluto's high
atmosphere, and provides strong evidence that the underlying density
fluctuations are governed by the gravity-wave dispersion relation.Comment: Accepted 18 June 2009 for publication in Icaru
A Gate-To-Gate Life-Cycle Inventory of Solid Hardwood Flooring in the Eastern US
Environmental impacts associated with building materials are under increasing scrutiny in the US. A gate-to-gate life-cycle inventory (LCI) of solid strip and solid plank hardwood flooring production was conducted in the eastern US for the reporting year 2006. Survey responses from hardwood flooring manufacturing facilities in this region accounted for nearly 28% of total US solid hardwood flooring production for that year. This study examined the materials, fuels, and energy required to produce solid hardwood flooring, coproducts, and the emissions to air, land, and water. SimaPro software was used to quantify the environmental impacts associated with the reported materials use and emissions. Impact data were allocated on their mass contribution to all product and coproduct production of 1.0 m3 (oven-dry mass basis) of solid hardwood flooring. Carbon flow and transportation data are provided in addition to the LCI data. Results of this study are useful for creating a cradle-to-gate inventory when linked to LCIs for the hardwood forest resource and the production of solid hardwood lumber in the same region
Temperature Fluctuations driven by Magnetorotational Instability in Protoplanetary Disks
The magnetorotational instability (MRI) drives magnetized turbulence in
sufficiently ionized regions of protoplanetary disks, leading to mass
accretion. The dissipation of the potential energy associated with this
accretion determines the thermal structure of accreting regions. Until
recently, the heating from the turbulence has only been treated in an
azimuthally averaged sense, neglecting local fluctuations. However, magnetized
turbulence dissipates its energy intermittently in current sheet structures. We
study this intermittent energy dissipation using high resolution numerical
models including a treatment of radiative thermal diffusion in an optically
thick regime. Our models predict that these turbulent current sheets drive
order unity temperature variations even where the MRI is damped strongly by
Ohmic resistivity. This implies that the current sheet structures where energy
dissipation occurs must be well resolved to correctly capture the flow
structure in numerical models. Higher resolutions are required to resolve
energy dissipation than to resolve the magnetic field strength or accretion
stresses. The temperature variations are large enough to have major
consequences for mineral formation in disks, including melting chondrules,
remelting calcium-aluminum rich inclusions, and annealing silicates; and may
drive hysteresis: current sheets in MRI active regions could be significantly
more conductive than the remainder of the disk.Comment: 16 pages, 13 figures, ApJ In Press, updated to match proof
Ferromagnetism in the Periodic Anderson Model - a Modified Alloy Analogy
We introduce a new aproximation scheme for the periodic Anderson model (PAM).
The modified alloy approximation represents an optimum alloy approximation for
the strong coupling limit, which can be solved within the CPA-formalism.
Zero-temperature and finite-temperature phase diagrams are presented for the
PAM in the intermediate-valence regime. The diversity of magnetic properties
accessible by variation of the system parameters can be studied by means of
quasiparticle densities of states: The conduction band couples either ferro- or
antiferromagneticaly to the f-levels. A finite hybridization is a necessary
precondition for ferromagnetism. However, too strong hybridization generally
suppresses ferromagnetism, but can for certain system parameters also lead to a
semi-metallic state with unusual magnetic properties. By comparing with the
spectral density approximation, the influence of quasiparticle damping can be
examined.Comment: 20 pages, 13 figure
- …