1,136 research outputs found

    Photon storage in Lambda-type optically dense atomic media. I. Cavity model

    Full text link
    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we perform the same analysis for the cavity model. In particular, we show that the retrieval efficiency is equal to C/(1+C) independent of the retrieval technique, where C is the cooperativity parameter. We also derive the optimal strategy for storage and, in particular, demonstrate that at any detuning one can store, with the optimal efficiency of C/(1+C), any smooth input mode satisfying T C gamma >> 1 and a certain class of resonant input modes satisfying T C gamma ~ 1, where T is the duration of the input mode and 2 gamma is the transition linewidth. In the two subsequent papers of the series, we present the full analysis of the free-space model and discuss the effects of inhomogeneous broadening on photon storage.Comment: 16 pages, 2 figures. V2: significant changes in presentation, new references, higher resolution of figure

    Faddeev-type calculations of few-body nuclear reactions including Coulomb interaction

    Full text link
    The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the description of few-body nuclear reactions. Calculations are done in the framework of Faddeev-type equations in momentum-space. The reliability of the method is demonstrated. The Coulomb effect on observables is discussed.Comment: Proceedings of the 4th Asia-Pacific Conference on Few-Body Problems in Physics (APFB08), Depok, Indonesia, August 19 - 23, 2008, to be published in Mod. Phys. Lett.

    Photon storage in Lambda-type optically dense atomic media. III. Effects of inhomogeneous broadening

    Full text link
    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)] and in the two preceding papers [Gorshkov et al., Phys. Rev. A 76, 033804 (2007); 76, 033805 (2007)], we used a universal physical picture to optimize and demonstrate equivalence between a wide range of techniques for storage and retrieval of photon wave packets in homogeneously broadened Lambda-type atomic media, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo-based techniques. In the present paper, we generalize this treatment to include inhomogeneous broadening. In particular, we consider the case of Doppler-broadened atoms and assume that there is a negligible difference between the Doppler shifts of the two optical transitions. In this situation, we show that, at high enough optical depth, all atoms contribute coherently to the storage process as if the medium were homogeneously broadened. We also discuss the effects of inhomogeneous broadening in solid state samples. In this context, we discuss the advantages and limitations of reversing the inhomogeneous broadening during the storage time, as well as suggest a way for achieving high efficiencies with a nonreversible inhomogeneous profile.Comment: 15 pages, 8 figures. V2: minor changes in presentation, new references, higher resolution of figure

    Interpolation of equation-of-state data

    Full text link
    Aims. We use Hermite splines to interpolate pressure and its derivatives simultaneously, thereby preserving mathematical relations between the derivatives. The method therefore guarantees that thermodynamic identities are obeyed even between mesh points. In addition, our method enables an estimation of the precision of the interpolation by comparing the Hermite-spline results with those of frequent cubic (B-) spline interpolation. Methods. We have interpolated pressure as a function of temperature and density with quintic Hermite 2D-splines. The Hermite interpolation requires knowledge of pressure and its first and second derivatives at every mesh point. To obtain the partial derivatives at the mesh points, we used tabulated values if given or else thermodynamic equalities, or, if not available, values obtained by differentiating B-splines. Results. The results were obtained with the grid of the SAHA-S equation-of-state (EOS) tables. The maximum lgPlg P difference lies in the range from 10−910^{-9} to 10−410^{-4}, and Γ1\Gamma_1 difference varies from 10−910^{-9} to 10−310^{-3}. Specifically, for the points of a solar model, the maximum differences are one order of magnitude smaller than the aforementioned values. The poorest precision is found in the dissociation and ionization regions, occurring at T∼1.5⋅103−105T \sim 1.5\cdot 10^3 - 10^5 K. The best precision is achieved at higher temperatures, T>105T>10^5 K. To discuss the significance of the interpolation errors we compare them with the corresponding difference between two different equation-of-state formalisms, SAHA-S and OPAL 2005. We find that the interpolation errors of the pressure are a few orders of magnitude less than the differences from between the physical formalisms, which is particularly true for the solar-model points.Comment: Accepted for publication in A&

    Photon storage in Lambda-type optically dense atomic media. II. Free-space model

    Full text link
    In a recent paper [Gorshkov et al., Phys. Rev. Lett. 98, 123601 (2007)], we presented a universal physical picture for describing a wide range of techniques for storage and retrieval of photon wave packets in Lambda-type atomic media in free space, including the adiabatic reduction of the photon group velocity, pulse-propagation control via off-resonant Raman techniques, and photon-echo based techniques. This universal picture produced an optimal control strategy for photon storage and retrieval applicable to all approaches and yielded identical maximum efficiencies for all of them. In the present paper, we present the full details of this analysis as well some of its extensions, including the discussion of the effects of non-degeneracy of the two lower levels of the Lambda system. The analysis in the present paper is based on the intuition obtained from the study of photon storage in the cavity model in the preceding paper [Gorshkov et al., Phys. Rev. A 76, 033804 (2007)].Comment: 26 pages, 8 figures. V2: significant changes in presentation, new references, higher resolution of figure

    Production of a pion in association with a high-Q2 dilepton pair in antiproton-proton annihilation at GSI-FAIR

    Full text link
    We evaluate the cross section for anti-p p -> l+ l- pi0 in the forward direction and for large lepton pair invariant mass. In this kinematical region, the leading-twist amplitude factorises into a short-distance matrix element, long-distance dominated antiproton Distribution Amplitudes and proton to pion Transition Distribution Amplitudes (TDA). Using a modelling inspired from the chiral limit for these TDAs, we obtain a first estimate of this cross section, thus demonstrating that this process can be measured at GSI-FAIR.Comment: Latex, 5 pages, 3 figure

    Formation of ions by high energy photons

    Get PDF
    We calculate the electron energy spectrum of ionization by a high energy photon, accompanied by creation of electron-positron pair. The total cross section of the process is also obtained. The asymptotics of the cross section does not depend on the photon energies. At the photon energies exceeding a certain value ω0\omega_0 this appeares to to be the dominant mechanism of formation of the ions. The dependence of ω0\omega_0 on the value of nuclear charge is obtained. Our results are consistent with experimental data.Comment: 16 pages, 6 figure

    Elastic ppˉ\rm{p\bar p} Scattering Amplitude at 1.8 TeV and Determination of Total Cross Section

    Full text link
    The data on ppˉ\mathrm{\bar p} elastic scattering at 1.8 and 1.96 TeV are analysed in terms of real and imaginary amplitudes, in a treatment with high accuracy, covering the whole t-range and satisfying the expectation of dispersion relation for amplitudes and for slopes. A method is introduced for determination of the total cross section and the other forward scattering parameters and to check compatibility of E-710, CDF and the recent D0 data. Slopes BRB_R and BI B_I of the real and imaginary amplitudes, treated as independent quantities, influence the amplitudes in the whole t-range and are important for the determination of the total cross section. The amplitudes are fully constructed, and a prediction is made of a marked dip in dσ/dt d\sigma/dt in the ∣t∣|t| range 3 - 5 GeV2^2 due to the universal contribution of the process of three gluon exchange.Comment: 22 pages, 12 figures, 2 table
    • …
    corecore