29,374 research outputs found

    Core-competitive Auctions

    Full text link
    One of the major drawbacks of the celebrated VCG auction is its low (or zero) revenue even when the agents have high value for the goods and a {\em competitive} outcome could have generated a significant revenue. A competitive outcome is one for which it is impossible for the seller and a subset of buyers to `block' the auction by defecting and negotiating an outcome with higher payoffs for themselves. This corresponds to the well-known concept of {\em core} in cooperative game theory. In particular, VCG revenue is known to be not competitive when the goods being sold have complementarities. A bottleneck here is an impossibility result showing that there is no auction that simultaneously achieves competitive prices (a core outcome) and incentive-compatibility. In this paper we try to overcome the above impossibility result by asking the following natural question: is it possible to design an incentive-compatible auction whose revenue is comparable (even if less) to a competitive outcome? Towards this, we define a notion of {\em core-competitive} auctions. We say that an incentive-compatible auction is α\alpha-core-competitive if its revenue is at least 1/α1/\alpha fraction of the minimum revenue of a core-outcome. We study the Text-and-Image setting. In this setting, there is an ad slot which can be filled with either a single image ad or kk text ads. We design an O(lnlnk)O(\ln \ln k) core-competitive randomized auction and an O(ln(k))O(\sqrt{\ln(k)}) competitive deterministic auction for the Text-and-Image setting. We also show that both factors are tight

    Weyl-type Fields with Geodesic Lines of Force

    Get PDF
    The static electrogravitational equations are studied and it is shown that an aligned type D metric which has a Weyl-type relationship between the gravitational and electric potential has shearfree geodesic lines of force. All such fields are then found and turn out to be the fields of a charged sphere, charged infinite rod and charged infinite plate. A further solution is also found with shearing geodesic lines of force. This new solution can have m>em>|e| or m<em<|e|, but cannot be in the Majumdar-Papapetrou class (in which m=em = |e|). It is algebraically general and has flat equipotential surfaces.Comment: 13 pages, RevTe

    Weak Lensing Mass Reconstruction: Flexion vs Shear

    Full text link
    Weak gravitational lensing has proven to be a powerful tool to map directly the distribution of dark matter in the Universe. The technique, currently used, relies on the accurate measurement of the gravitational shear that corresponds to the first-order distortion of the background galaxy images. More recently, a new technique has been introduced that relies on the accurate measurement of the gravitational flexion that corresponds to the second-order distortion of the background galaxy images. This technique should probe structures on smaller scales than that of a shear analysis. The goal of this paper is to compare the ability of shear and flexion to reconstruct the dark matter distribution by taking into account the dispersion in shear and flexion measurements. Our results show that the flexion is less sensitive than shear for constructing the convergence maps on scales that are physically feasible for mapping, meaning that flexion alone not be used to do convergence map reconstruction, even on small scales.Comment: Submitted to Ap

    Evidence of Skyrmion excitations about ν=1\nu =1 in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission

    Full text link
    We observe a dramatic reduction in the degree of spin-polarization of a two-dimensional electron gas in a magnetic field when the Fermi energy moves off the mid-point of the spin-gap of the lowest Landau level, ν=1\nu=1. This rapid decay of spin alignment to an unpolarized state occurs over small changes to both higher and lower magnetic field. The degree of electron spin polarization as a function of ν\nu is measured through the magneto-absorption spectra which distinguish the occupancy of the two electron spin states. The data provide experimental evidence for the presence of Skyrmion excitations where exchange energy dominates Zeeman energy in the integer quantum Hall regime at ν=1\nu=1

    Exciton mediated one phonon resonant Raman scattering from one-dimensional systems

    Full text link
    We use the Kramers-Heisenberg approach to derive a general expression for the resonant Raman scattering cross section from a one-dimensional (1D) system explicitly accounting for excitonic effects. The result should prove useful for analyzing the Raman resonance excitation profile lineshapes for a variety of 1D systems including carbon nanotubes and semiconductor quantum wires. We apply this formalism to a simple 1D model system to illustrate the similarities and differences between the free electron and correlated electron-hole theories.Comment: 10 pages, 6 figure

    Hydrogen and fluorine in the surfaces of lunar samples

    Get PDF
    The resonant nuclear reaction F-19 (p, alpha gamma)0-16 has been used to perform depth sensitive analyses for both fluorine and hydrogen in lunar samples. The resonance at 0.83 MeV (center-of-mass) in this reaction has been applied to the measurement of the distribution of trapped solar protons in lunar samples to depths of about 1/2 micrometer. These results are interpreted in terms of terrestrial H2O surface contamination and a redistribution of the implanted solar H which has been influenced by heavy radiation damage in the surface region. Results are also presented for an experiment to test the penetration of H2O into laboratory glass samples which have been irradiated with 0-16 to simulate the radiation damaged surfaces of lunar glasses. Fluorine determinations have been performed in a 1 pm surface layer on lunar samples using the same F-19 alpha gamma)0-16 resonance. The data are discussed from the standpoint of lunar fluorine and Teflon contamination

    The Origin of the Electromagnetic Interaction in Einstein's Unified Field Theory with Sources

    Full text link
    Einstein's unified field theory is extended by the addition of matter terms in the form of a symmetric energy tensor and of two conserved currents. From the field equations and from the conservation identities emerges the picture of a gravoelectrodynamics in a dynamically polarizable Riemannian continuum. Through an approximate calculation exploiting this dynamical polarizability it is argued that ordinary electromagnetism may be contained in the theory.Comment: 8 pages. Misprint in eq. 15 correcte
    corecore