8,139 research outputs found

    Population health profile of the NSW Outback Division of General Practice: supplement

    Get PDF
    © Commonwealth of Australia To view the data presented in the profiles in Excel spreadsheets or via Interactive Mapping, please see the PHIDU website at: www.publichealth.gov.au

    Population health profile of the Northern Melbourne Division of General Practice

    Get PDF
    © Commonwealth of Australia To view the data presented in the profiles in Excel spreadsheets or via Interactive Mapping, please see the PHIDU website at: www.publichealth.gov.au

    The Influence of Metallicity on Star Formation in Protogalaxies

    Full text link
    In cold dark matter cosmological models, the first stars to form are believed to do so within small protogalaxies. We wish to understand how the evolution of these early protogalaxies changes once the gas forming them has been enriched with small quantities of heavy elements, which are produced and dispersed into the intergalactic medium by the first supernovae. Our initial conditions represent protogalaxies forming within a fossil H II region, a previously ionized region that has not yet had time to cool and recombine. We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics (SPH) simulations that incorporate the effects of the appropriate chemical and thermal processes. Our previous simulations demonstrated that for metallicities Z < 0.001 Z_sun, metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3) and temperatures above 2000 K. Here, we present the results of high-resolution simulations using particle splitting to improve resolution in regions of interest. These simulations allow us to address the question of whether there is a critical metallicity above which fine structure cooling from metals allows efficient fragmentation to occur, producing an initial mass function (IMF) resembling the local Salpeter IMF, rather than only high-mass stars.Comment: 3 pages, 2 figures, First Stars III conference proceeding

    Power grids vulnerability: a complex network approach

    Get PDF
    Power grids exhibit patterns of reaction to outages similar to complex networks. Blackout sequences follow power laws, as complex systems operating near a critical point. Here, the tolerance of electric power grids to both accidental and malicious outages is analyzed in the framework of complex network theory. In particular, the quantity known as efficiency is modified by introducing a new concept of distance between nodes. As a result, a new parameter called net-ability is proposed to evaluate the performance of power grids. A comparison between efficiency and net-ability is provided by estimating the vulnerability of sample networks, in terms of both the metrics.Comment: 16 pages, 3 figures. Figure 2 and table II modified. Typos corrected. Version accepted for publication in Chao

    How an improved implementation of H2 self-shielding influences the formation of massive stars and black holes

    Full text link
    High redshift quasars at z>6 have masses up to ~10910^9 M_\odot. One of the pathways to their formation includes direct collapse of gas, forming a supermassive star, precursor of the black hole seed. The conditions for direct collapse are more easily achievable in metal-free haloes, where atomic hydrogen cooling operates and molecular hydrogen (H2) formation is inhibited by a strong external UV flux. Above a certain value of UV flux (J_crit), the gas in a halo collapses isothermally at ~10410^4 K and provides the conditions for supermassive star formation. However, H2 can self-shield, reducing the effect of photodissociation. So far, most numerical studies used the local Jeans length to calculate the column densities for self-shielding. We implement an improved method for the determination of column densities in 3D simulations and analyse its effect on the value of J_crit. This new method captures the gas geometry and velocity field and enables us to properly determine the direction-dependent self-shielding factor of H2 against photodissociating radiation. We find a value of J_crit that is a factor of two smaller than with the Jeans approach (~2000 J_21 vs. ~4000 J_21). The main reason for this difference is the strong directional dependence of the H2 column density. With this lower value of J_crit, the number of haloes exposed to a flux >J_crit is larger by more than an order of magnitude compared to previous studies. This may translate into a similar enhancement in the predicted number density of black hole seeds.Comment: 14 pages, 12 figures, published in MNRA

    Open questions in the study of population III star formation

    Full text link
    The first stars were key drivers of early cosmic evolution. We review the main physical elements of the current consensus view, positing that the first stars were predominantly very massive. We continue with a discussion of important open questions that confront the standard model. Among them are uncertainties in the atomic and molecular physics of the hydrogen and helium gas, the multiplicity of stars that form in minihalos, and the possible existence of two separate modes of metal-free star formation.Comment: 15 pages, 2 figures. To appear in the conference proceedings for IAU Symposium 255: Low-Metallicity Star Formation: From the First Stars to Dwarf Galaxie

    The singular behavior of massive QCD amplitudes

    Get PDF
    We discuss the structure of infrared singularities in on-shell QCD amplitudes with massive partons and present a general factorization formula in the limit of small parton masses. The factorization formula gives rise to an all-order exponentiation of both, the soft poles in dimensional regularization and the large collinear logarithms of the parton masses. Moreover, it provides a universal relation between any on-shell amplitude with massive external partons and its corresponding massless amplitude. For the form factor of a heavy quark we present explicit results including the fixed-order expansion up to three loops in the small mass limit. For general scattering processes we show how our constructive method applies to the computation of all singularities as well as the constant (mass-independent) terms of a generic massive n-parton QCD amplitude up to the next-to-next-to-leading order corrections.Comment: version to appear in JHEP (sec. 3 with expanded discussion and appendix with added results

    Mobility Impacts of the Second Phase of Covid-19: General Considerations and Regulation from Tuscany (Italy) and Kentucky (USA)

    Get PDF
    he second phase of the virus Covid-19 is about to start a new configuration of accessibility to activities and cities. This phase, which will be able to see different restriction levels both between different countries and between successive periods, is the great challenge that the whole world is facing and which, if not managed in a planned and strategic way, risks turning into a further catastrophe. The social distancing rules imposed will necessarily lead to an escape from public transport in the cities, which could turn into total congestion of city traffic, leading the cities themselves to paralysis. We need a series of countermeasures that define new mobility capable of mitigating the effects of the mobility offer imbalance by intervening quickly, economically, and, in the short term, emergency on the whole transport chain. This article presents some possible actions to be put in place, and some mobility measures actually applied in Tuscany coastal area. © 2020, Springer Nature Switzerland AG

    Black Hole Feedback On The First Galaxies

    Get PDF
    We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.Astronom
    corecore