265 research outputs found

    Identification of QTL Controlling Thermal Properties of Maize Starch

    Get PDF
    Starch has many uses and some of these uses would be facilitated by altering its thermal properties. Genetic manipulation of starch thermal properties will be facilitated by a better understanding of the genetic control of starch gelatinization. We used differential scanning calorimetry to characterize the gelatinization parameters of maize (Zea mays L.) kernel starch prepared from two populations of recombinant inbred lines, an intermated B73xMo17 population (IBM) and an F6:7 Mo17xH99 population. The traits examined were the onset and peak temperatures of gelatinization and the enthalpy of gelatinization. These traits were measured for both native starch and for gelatinized starch allowed to recrystallize, a process called retrogradation. Substantial variation in these traits was found in spite of the narrow genetic base of the populations. We identified several quantitative trait loci (QTL) controlling traits of interest in each population. In the IBM population, a significant QTL for the peak temperature of gelatinization of retrograded starch co-localized to a molecular marker in the Wx1 gene, which encodes a granule bound starch synthase. The major QTL identified in this study explain, on average, β‰ˆ15% of the variation for a given trait, underscoring the complexity of the genetic control of starch functional properties

    Thermal Properties of Corn Starch Extracted with Different Blending Methods: Microblender and Homogenizer

    Get PDF
    Thermal properties of starch can be evaluated by using differential scanning calorimetry (DSC). DSC generates data of the thermal parameters of starch, such as onset temperature (To), peak temperature (Tp), and enthalpy of gelatinization (βˆ†H). These parameters may help determine the functionality of specific starches and, therefore, their utility in the food industry. Thermal properties of corn starch can also be used as criteria for selection of desirable lines for breeding purposes to obtain starch with specific properties useful in industry (Meuser et al 1989)

    Resistant Starch and Starch Thermal Characteristics in Exotic Corn Lines Grown in Temperate and Tropical Environments

    Get PDF
    Corn as a food that is heated and cooled to allow starch retrogradation has higher levels of resistant starch (RS). Increasing the amount of RS can make corn an even healthier food and may be accomplished by breeding and selection, especially by using exotic germplasm. Sixty breeding lines of introgressed exotic germplasm backgrounds, selected for high yield, were grown in three tropical and temperate locations and analyzed for starch thermal characteristics and RS levels. Although actual values for all starch characteristics were within normal levels, most characteristics had significant genotypic effects, and all had significant location effects. Thermal properties of retrograded starch were more influenced by the environment than the thermal properties of raw starch, making retrograded starch traits more heritable than raw starch traits. This suggests that a breeding strategy based on retrograded starch traits will have a better chance of success than a breeding strategy based on raw starch traits. A significant genotype effect for RS levels indicates that genotypic selection to raise the level of RS and increase the healthful aspects of corn food should be successful. Significant location effects indicate that breeders using winter nurseries to accelerate their breeding progress need to be careful when making selections using RS data collected on seed grown in the tropics. A small but highly significant correlation between RS and some thermal characteristics, especially percentage of retrogradation, indicates that we may be able to select promising genotypes for RS selection based on our extensive database of thermal characteristics collected on a wide number of diverse corn lines

    Intellectual Property Rights and the Ascent of Proprietary Innovation in Agriculture

    Get PDF
    Biological innovations in agriculture did not enjoy protection by formal intellectual property rights (IPRs) for a long time, but the recent trend has been one of considerable broadening and strengthening of these rights. We document the nature of these IPRs and their evolution, and provide an assessment of their impacts on innovation. We integrate elements of the institutional history of plant IPRs with a discussion of the relevant economic theory and a review of applicable empirical evidence. Throughout, we highlight how the experience of biological innovation mirrors, or differs from, the broader literature on IPRs and innovation. We conclude with some considerations on the relation between IPRs and market structure and the pricing of proprietary inputs in agricultur

    Understanding and using quantitative genetic variation

    Get PDF
    Quantitative genetics, or the genetics of complex traits, is the study of those characters which are not affected by the action of just a few major genes. Its basis is in statistical models and methodology, albeit based on many strong assumptions. While these are formally unrealistic, methods work. Analyses using dense molecular markers are greatly increasing information about the architecture of these traits, but while some genes of large effect are found, even many dozens of genes do not explain all the variation. Hence, new methods of prediction of merit in breeding programmes are again based on essentially numerical methods, but incorporating genomic information. Long-term selection responses are revealed in laboratory selection experiments, and prospects for continued genetic improvement are high. There is extensive genetic variation in natural populations, but better estimates of covariances among multiple traits and their relation to fitness are needed. Methods based on summary statistics and predictions rather than at the individual gene level seem likely to prevail for some time yet

    Maize (Zea mays L.) Genome Diversity as Revealed by RNA-Sequencing

    Get PDF
    Maize is rich in genetic and phenotypic diversity. Understanding the sequence, structural, and expression variation that contributes to phenotypic diversity would facilitate more efficient varietal improvement. RNA based sequencing (RNA-seq) is a powerful approach for transcriptional analysis, assessing sequence variation, and identifying novel transcript sequences, particularly in large, complex, repetitive genomes such as maize. In this study, we sequenced RNA from whole seedlings of 21 maize inbred lines representing diverse North American and exotic germplasm. Single nucleotide polymorphism (SNP) detection identified 351,710 polymorphic loci distributed throughout the genome covering 22,830 annotated genes. Tight clustering of two distinct heterotic groups and exotic lines was evident using these SNPs as genetic markers. Transcript abundance analysis revealed minimal variation in the total number of genes expressed across these 21 lines (57.1% to 66.0%). However, the transcribed gene set among the 21 lines varied, with 48.7% expressed in all of the lines, 27.9% expressed in one to 20 lines, and 23.4% expressed in none of the lines. De novo assembly of RNA-seq reads that did not map to the reference B73 genome sequence revealed 1,321 high confidence novel transcripts, of which, 564 loci were present in all 21 lines, including B73, and 757 loci were restricted to a subset of the lines. RT-PCR validation demonstrated 87.5% concordance with the computational prediction of these expressed novel transcripts. Intriguingly, 145 of the novel de novo assembled loci were present in lines from only one of the two heterotic groups consistent with the hypothesis that, in addition to sequence polymorphisms and transcript abundance, transcript presence/absence variation is present and, thereby, may be a mechanism contributing to the genetic basis of heterosis

    Heterosis as Investigated in Terms of Polyploidy and Genetic Diversity Using Designed Brassica juncea Amphiploid and Its Progenitor Diploid Species

    Get PDF
    Fixed heterosis resulting from favorable interactions between the genes on their homoeologous genomes in an allopolyploid is considered analogous to classical heterosis accruing from interactions between homologous chromosomes in heterozygous plants of a diploid species. It has been hypothesized that fixed heterosis may be one of the causes of low classical heterosis in allopolyploids. We used Indian mustard (Brassica juncea, 2nβ€Š=β€Š36; AABB) as a model system to analyze this hypothesis due to ease of its resynthesis from its diploid progenitors, B. rapa (2nβ€Š=β€Š20; AA) and B. nigra (2nβ€Š=β€Š16; BB). Both forms of heterosis were investigated in terms of ploidy level, gene action and genetic diversity. To facilitate this, eleven B. juncea genotypes were resynthesized by hybridizing ten near inbred lines of B. rapa and nine of B. nigra. Three half diallel combinations involving resynthesized B. juncea (11Γ—11) and the corresponding progenitor genotypes of B. rapa (10Γ—10) and B. nigra (9Γ—9) were evaluated. Genetic diversity was estimated based on DNA polymorphism generated by SSR primers. Heterosis and genetic diversity in parental diploid species appeared not to predict heterosis and genetic diversity at alloploid level. There was also no association between combining ability, genetic diversity and heterosis across ploidy. Though a large proportion (0.47) of combinations showed positive values, the average fixed heterosis was low for seed yield but high for biomass yield. The genetic diversity was a significant contributor to fixed heterosis for biomass yield, due possibly to adaptive advantage it may confer on de novo alloploids during evolution. Good general/specific combiners at diploid level did not necessarily produce good general/specific combiners at amphiploid level. It was also concluded that polyploidy impacts classical heterosis indirectly due to the negative association between fixed heterosis and classical heterosis

    Heterosis Is Prevalent for Multiple Traits in Diverse Maize Germplasm

    Get PDF
    BACKGROUND: Heterosis describes the superior phenotypes observed in hybrids relative to their inbred parents. Maize is a model system for studying heterosis due to the high levels of yield heterosis and commercial use of hybrids. METHODS: The inbred lines from an association mapping panel were crossed to a common inbred line, B73, to generate nearly 300 hybrid genotypes. Heterosis was evaluated for seventeen phenotypic traits in multiple environments. The majority of hybrids exhibit better-parent heterosis in most of the hybrids measured. Correlations between the levels of heterosis for different traits were generally weak, suggesting that the genetic basis of heterosis is trait-dependent. CONCLUSIONS: The ability to predict heterosis levels using inbred phenotype or genetic distance between the parents varied for the different traits. For some traits it is possible to explain a significant proportion of the heterosis variation using linear modeling while other traits are more difficult to predict
    • …
    corecore