4,989 research outputs found

    Enhanced conduction band density of states in intermetallic EuTSi3_3 (T=Rh, Ir)

    Full text link
    We report on the physical properties of single crystalline EuRhSi3_3 and polycrystalline EuIrSi3_3, inferred from magnetisation, electrical transport, heat capacity and 151^{151}Eu M\"ossbauer spectroscopy. These previously known compounds crystallise in the tetragonal BaNiSn3_3-type structure. The single crystal magnetisation in EuRhSi3_3 has a strongly anisotropic behaviour at 2 K with a spin-flop field of 13 T, and we present a model of these magnetic properties which allows the exchange constants to be determined. In both compounds, specific heat shows the presence of a cascade of two close transitions near 50 K, and the 151^{151}Eu M\"ossbauer spectra demonstrate that the intermediate phase has an incommensurate amplitude modulated structure. We find anomalously large values, with respect to other members of the series, for the RKKY N\'eel temperature, for the spin-flop field (13 T), for the spin-wave gap (\simeq 20-25 K) inferred from both resistivity and specific heat data, for the spin-disorder resistivity in EuRhSi3_3 (35\simeq 35 μ\muOhm.cm) and for the saturated hyperfine field (52 T). We show that all these quantities depend on the electronic density of states at the Fermi level, implying that the latter must be strongly enhanced in these two materials. EuIrSi3_3 exhibits a giant magnetoresistance ratio, with values exceeding 600 % at 2 K in a field of 14 T.Comment: 6 pages, 8 figure

    Quenched Averages for self-avoiding walks and polygons on deterministic fractals

    Full text link
    We study rooted self avoiding polygons and self avoiding walks on deterministic fractal lattices of finite ramification index. Different sites on such lattices are not equivalent, and the number of rooted open walks W_n(S), and rooted self-avoiding polygons P_n(S) of n steps depend on the root S. We use exact recursion equations on the fractal to determine the generating functions for P_n(S), and W_n(S) for an arbitrary point S on the lattice. These are used to compute the averages ,,, , and <logWn(S)><log W_n(S)> over different positions of S. We find that the connectivity constant μ\mu, and the radius of gyration exponent ν\nu are the same for the annealed and quenched averages. However,  nlogμ+(αq2)logn ~ n log \mu + (\alpha_q -2) log n, and  nlogμ+(γq1)logn ~ n log \mu + (\gamma_q -1)log n, where the exponents αq\alpha_q and γq\gamma_q take values different from the annealed case. These are expressed as the Lyapunov exponents of random product of finite-dimensional matrices. For the 3-simplex lattice, our numerical estimation gives αq0.72837±0.00001 \alpha_q \simeq 0.72837 \pm 0.00001; and γq1.37501±0.00003\gamma_q \simeq 1.37501 \pm 0.00003, to be compared with the annealed values αa=0.73421\alpha_a = 0.73421 and γa=1.37522\gamma_a = 1.37522.Comment: 17 pages, 10 figures, submitted to Journal of Statistical Physic

    Application of importance sampling to the computation of large deviations in non-equilibrium processes

    Full text link
    We present an algorithm for finding the probabilities of rare events in nonequilibrium processes. The algorithm consists of evolving the system with a modified dynamics for which the required event occurs more frequently. By keeping track of the relative weight of phase-space trajectories generated by the modified and the original dynamics one can obtain the required probabilities. The algorithm is tested on two model systems of steady-state particle and heat transport where we find a huge improvement from direct simulation methods.Comment: 5 pages, 4 figures; some modification

    Anomalous local magnetic field distribution and strong pinning in CaFe1.94Co0.06As2 single crystals

    Full text link
    Magneto-optical imaging of a single crystal of CaFe1.94Co0.06As2, shows anomalous remnant magnetization within Meissner like regions of the superconductor. The unconventional shape of the local magnetization hysteresis loop suggests admixture of superconducting and magnetic fractions governing the response. Near the superconducting transition temperature, local magnetic field exceeds the applied field resulting in a diamagnetic to positive magnetization transformation. The observed anomalies in the local magnetic field distribution are accompanied with enhanced bulk pinning in the CaFe1.94Co0.06As2 single crystals. We propose our results suggest a coexistence of superconductivity and magnetic correlations.Comment: 6 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1201.369

    Magnetic properties and complex magnetic phase diagram in non centrosymmetric EuRhGe3_3 and EuIrGe3_3 single crystals

    Get PDF
    We report the magnetic properties of two Eu based compounds, single crystalline EuIrGe3_3 and EuRhGe3_3, inferred from magnetisation, electrical transport, heat capacity and 151^{151}Eu M\"{o}ssbauer spectroscopy. These previously known compounds crystallise in the non-centrosymmetric, tetragonal, I4mmI4mm, BaNiSn3_3-type structure. Single crystals of EuIrGe3_3 and EuRhGe3_3 were grown using high temperature solution growth method using In as flux. EuIrGe3_3 exhibits two magnetic orderings at TN1T_{\rm N1} = 12.4 K, and TN2T_{\rm N2} = 7.3 K. On the other hand EuRhGe3_3 presents a single magnetic transition with a TNT_{\rm N} = 12 K. 151^{151}Eu M\"{o}ssbauer spectra present evidence for a cascade of transitions from paramagnetic to incommensurate amplitude modulated followed by an equal moment antiferromagnetic phase at lower temperatures in EuIrGe3_3, the transitions having a substantial first order character. On the other hand the 151^{151}Eu M\"{o}ssbauer spectra at 4.2 and 9 K in EuRhGe3_3 present evidence of a single magnetic transition. In both compounds a superzone gap is observed for the current density JJ\parallel [001], which enhances with transverse magnetic field. The magnetisation measured up to 14 T shows the occurrence of field induced transitions, which are well documented in the magnetotransport data as well. The magnetic phase diagram constructed from these data is complex, revealing the presence of many phases in the HTH-T phase space

    Energy current magnification in coupled oscillator loops

    Get PDF
    Motivated by studies on current magnification in quantum mesoscopic systems we consider sound and heat transmission in classical models of oscillator chains. A loop of coupled oscillators is connected to two leads through which one can either transmit monochromatic waves or white noise signal from heat baths. We look for the possibility of current magnification in this system due to some asymmetry introduced between the two arms in the loop. We find that current magnification is indeed obtained for particular frequency ranges. However the integrated current shows the effect only in the presence of a pinning potential for the atoms in the leads. We also study the effect of anharmonicity on current magnification.Comment: 5 pages, 5 figure

    Magnetic properties of EuPtSi3_3 single crystals

    Full text link
    Single crystals of EuPtSi3_3, which crystallize in the BaNiSn3_3-type crystal structure, have been grown by high temperature solution growth method using molten Sn as the solvent. EuPtSi3_3 which lacks the inversion symmetry and has only one Eu site in the unit cell is found to be an antiferromagnet with two successive magnetic transitions at TN1T_{\rm N1} = 17 K and TN2T_{\rm N2} = 16 K, as inferred from magnetic susceptibility, heat capacity and 151^{151}Eu M\"ossbauer measurements. The isothermal magnetization data for HH \parallel [001] reveal a metamagnetic transition at a critical field HcH_{\rm c} = 1 T. The magnetization saturates to a moment value of 6.43 μB\mu_{\rm B}/Eu above 5.9 T (9.2 T) for HH \parallel [001] ([100]), indicating that these fields are spin-flip fields for the divalent Eu moments along the two axes. The origin of this anisotropic behaviour is discussed. A magnetic (H, T) phase diagram has been constructed from the temperature dependence of isothermal magnetization data. The reduced jump in the heat capacity at TN1T_{\rm N1} indicates a transition to an incommensurate, amplitude modulated antiferromagnetic structure. The shape of the hyperfine field split M\"ossbauer spectrum at TN1T_{\rm N1} provides additional support for the proposed nature of this magnetic transition.Comment: 6 pages, 6 figures. Submitted to Phys. Rev.
    corecore