1,779 research outputs found

    Field Induced Nodal Order Parameter in the Tunneling Spectrum of YBa2_2Cu3_3O7x_{7-x} Superconductor

    Full text link
    We report planar tunneling measurements on thin films of YBa2_2Cu3_3O7x_{7-x} at various doping levels under magnetic fields. By choosing a special setup configuration, we have probed a field induced energy scale that dominates in the vicinity of a node of the d-wave superconducting order parameter. We found a high doping sensitivity for this energy scale. At Optimum doping this energy scale is in agreement with an induced idxyid_{xy} order parameter. We found that it can be followed down to low fields at optimum doping, but not away from it.Comment: 9 pages, 8 figures, accepted for publication in Phys. Rev.

    Coexistence of a triplet nodal order-parameter and a singlet order-parameter at the interfaces of ferromagnet-superconductor Co/CoO/In junctions

    Full text link
    We present differential conductance measurements of Cobalt / Cobalt-Oxide / Indium planar junctions, 500nm x 500nm in size. The junctions span a wide range of barriers, from very low to a tunnel barrier. The characteristic conductance of all the junctions show a V-shape structure at low bias instead of the U-shape characteristic of a s-wave order parameter. The bias of the conductance peaks is, for all junctions, larger than the gap of indium. Both properties exclude pure s-wave pairing. The data is well fitted by a model that assumes the coexistence of s-wave singlet and equal spin p-wave triplet fluids. We find that the values of the s-wave and p-wave gaps follow the BCS temperature dependance and that the amplitude of the s-wave fluid increases with the barrier strength.Comment: 5 pages, Accepted to Phys. Rev.

    Spontaneous magnetization and Hall effect in superconductors with broken time-reversal symmetry

    Full text link
    Broken time reversal symmetry (BTRS) in d wave superconductors is studied and is shown to yield current carrying surface states. The corresponding spontaneous magnetization is temperature independent near the critical temperature Tc for weak BTRS, in accord with recent data. For strong BTRS and thin films we expect a temperature dependent spontaneous magnetization with a paramagnetic anomaly near Tc. The Hall conductance is found to vanish at zero wavevector q and finite frequency w, however at finite q,w it has an unusual structure.Comment: 7 pages, 1 eps figure, Europhysics Letters (in press

    Proximity Effect in Normal Metal - High Tc Superconductor Contacts

    Full text link
    We study the proximity effect in good contacts between normal metals and high Tc (d-wave) superconductors. We present theoretical results for the spatially dependent order parameter and local density of states, including effects of impurity scattering in the two sides, s-wave pairing interaction in the normal metal side (attractive or repulsive), as well as subdominant s-wave paring in the superconductor side. For the [100] orientation, a real combination d+s of the order parameters is always found. The spectral signatures of the proximity effect in the normal metal includes a suppression of the low-energy density of states and a finite energy peak structure. These features are mainly due to the impurity self-energies, which dominate over the effects of induced pair potentials. For the [110] orientation, for moderate transparencies, induction of a d+is order parameter on the superconductor side, leads to a proximity induced is order parameter also in the normal metal. The spectral signatures of this type of proximity effect are potentially useful for probing time-reversal symmetry breaking at a [110] interface.Comment: 10 pages, 10 figure

    Quantitative Simulation of the Superconducting Proximity Effect

    Full text link
    A numerical method is developed to calculate the transition temperature of double or multi-layers consisting of films of super- and normal conductors. The approach is based on a dynamic interpretation of Gorkov's linear gap equation and is very flexible. The mean free path of the different metals, transmission through the interface, ratio of specular reflection to diffusive scattering at the surfaces, and fraction of diffusive scattering at the interface can be included. Furthermore it is possible to vary the mean free path and the BCS interaction NV in the vicinity of the interface. The numerical results show that the normalized initial slope of an SN double layer is independent of almost all film parameters except the ratio of the density of states. There are only very few experimental investigations of this initial slope and they consist of Pb/Nn double layers (Nn stands for a normal metal). Surprisingly the coefficient of the initial slope in these experiments is of the order or less than 2 while the (weak coupling) theory predicts a value of about 4.5. This discrepancy has not been recognized in the past. The autor suggests that it is due to strong coupling behavior of Pb in the double layers. The strong coupling gap equation is evaluated in the thin film limit and yields the value of 1.6 for the coefficient. This agrees much better with the few experimental results that are available. PACS: 74.45.+r, 74.62.-c, 74.20.F

    Magnetic Interference Patterns and Vortices in Diffusive SNS junctions

    Full text link
    We study theoretically the electronic and transport properties of a diffusive superconductor-normal metal-superconductor (SNS) junction in the presence of a perpendicular magnetic field. We show that the field dependence of the critical current crosses over from the well-known Fraunhofer pattern in wide junctions to a monotonous decay when the width of the normal wire is smaller than the magnetic length \xi_H = \sqrt{\Phi_0/H}, where H is the magnetic field and \Phi_0 the flux quantum. We demonstrate that this behavior is a direct consequence of the magnetic vortex structure appearing in the normal region and predict how such structure is manifested in the local density of states.Comment: 6 pages, 3 figure

    Towards understanding the variability in biospheric CO2 fluxes:Using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2

    Get PDF
    Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world

    Local and macroscopic tunneling spectroscopy of Y(1-x)CaxBa2Cu3O(7-d) films: evidence for a doping dependent is or idxy component in the order parameter

    Full text link
    Tunneling spectroscopy of epitaxial (110) Y1-xCaxBa2Cu3O7-d films reveals a doping dependent transition from pure d(x2-y2) to d(x2-y2)+is or d(x2-y2)+idxy order parameter. The subdominant (is or idxy) component manifests itself in a splitting of the zero bias conductance peak and the appearance of subgap structures. The splitting is seen in the overdoped samples, increases systematically with doping, and is found to be an inherent property of the overdoped films. It was observed in both local tunnel junctions, using scanning tunneling microscopy (STM), and in macroscopic planar junctions, for films prepared by either RF sputtering or laser ablation. The STM measurements exhibit fairly uniform splitting size in [110] oriented areas on the order of 10 nm2 but vary from area to area, indicating some doping inhomogeneity. U and V-shaped gaps were also observed, with good correspondence to the local faceting, a manifestation of the dominant d-wave order parameter

    CcpA represses the expression of the divergent cit operons of Enterococcus faecalis through multiple cre sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Enterococcus faecalis </it>the genes encoding the enzymes involved in citrate metabolism are organized in two divergent operons, <it>citHO </it>and <it>oadHDB-citCDEFX-oadA-citMG </it>(<it>citCL </it>locus). Expression of both operons is specifically activated by adding citrate to the medium. This activation is mediated by binding of the GntR-like transcriptional regulator (CitO) to the <it>cis</it>-acting sequences located in the <it>cit </it>intergenic region. Early studies indicated that citrate and glucose could not be co-metabolized suggesting some form of catabolite repression, however the molecular mechanism remained unknown.</p> <p>Results</p> <p>In this study, we observed that the <it>citHO </it>promoter is repressed in the presence of sugars transported by the Phosphoenolpyruvate:carbohydrate Phosphotranserase System (PTS sugars). This result strongly suggested that Carbon Catabolic Repression (CCR) impedes the expression of the activator CitO and the subsequent induction of the <it>cit </it>pathway. In fact, we demonstrate that CCR is acting on both promoters. It is partially relieved in a <it>ccpA</it>-deficient <it>E. faecalis </it>strain indicating that a CcpA-independent mechanism is also involved in regulation of the two operons. Furthermore, sequence analysis of the <it>citH</it>/<it>oadH </it>intergenic region revealed the presence of three putative catabolite responsive elements (<it>cre</it>). We found that they are all active and able to bind the CcpA/P-Ser-HPr complex, which downregulates the expression of the <it>cit </it>operons. Systematic mutation of the CcpA/P-Ser-HPr binding sites revealed that <it>cre1 </it>and <it>cre2 </it>contribute to <it>citHO </it>repression, while <it>cre3 </it>is involved in CCR of <it>citCL</it></p> <p>Conclusion</p> <p>In conclusion, our study establishes that expression of the <it>cit </it>operons in <it>E. faecalis </it>is controlled by CCR via CcpA-dependent and -independent mechanisms.</p

    Scattering by magnetic and spin-orbit impurities and the Josephson current in superconductor-ferromagnet-superconductor junctions

    Full text link
    We analyze the Josephson current in a junction consisting of two superconductors (S) and a ferromagnetic layer (F) for arbitrary impurity concentration. In addition to non-magnetic impurities, we consider also magnetic ones and spin-orbit scattering. In the limit of weak proximity effect we solve the linearized Eilenberger equation and derive an analytical expression for the Josephson critical current valid in a broad range of parameters. This expression enables us to obtain not only known results in the dirty and clean limits but also in a intermediate region of the impurity concentration, which may be very important for comparison with experimental data.Comment: revised versio
    corecore