198 research outputs found

    Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films

    Get PDF
    Unambiguous and selective standoff (non-contact) infield detection of nitro-containingexplosives and taggants is an important goal but difficult to achieve with standard analyticaltechniques. Oxidative fluorescence quenching is emerging as a high sensitivity method fordetecting such materials but is prone to false positives—everyday items such as perfumeselicit similar responses. Here we report thin films of light-emitting dendrimers that detectvapours of explosives and taggants selectively—fluorescence quenching is not observed for arange of common interferents. Using a combination of neutron reflectometry, quartz crystalmicrobalance and photophysical measurements we show that the origin of the selectivity isprimarily electronic and not the diffusion kinetics of the analyte or its distribution in the film.The results are a major advance in the development of sensing materials for the standoffdetection of nitro-based explosive vapours, and deliver significant insights into the physicalprocesses that govern the sensing efficacy

    Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy

    Full text link
    Metal-organic frameworks (MOFs) are crystalline porous materials with designable topology, porosity and functionality, having promising applications in gas storage and separation, ion conduction and catalysis. It is challenging to observe MOFs with transmission electron microscopy (TEM) due to the extreme instability of MOFs upon electron beam irradiation. Here, we use a direct-detection electron-counting camera to acquire TEM images of the MOF ZIF-8 with an ultralow dose of 4.1 electrons per square ångström to retain the structural integrity. The obtained image involves structural information transferred up to 2.1 Å, allowing the resolution of individual atomic columns of Zn and organic linkers in the framework. Furthermore, TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including armchair-type surface terminations and coherent interfaces between assembled crystals. These observations allow us to understand how ZIF-8 crystals self-assemble and the subsequent influence of interfacial cavities on mass transport of guest molecules

    Peer Reviewed: Combinatorial Chemistry

    No full text
    • …
    corecore