43,257 research outputs found
Poincare's Recurrence Theorem and the Unitarity of the S matrix
A scattering process can be described by suitably closing the system and
considering the first return map from the entrance onto itself. This scattering
map may be singular and discontinuous, but it will be measure preserving as a
consequence of the recurrence theorem applied to any region of a simpler map.
In the case of a billiard this is the Birkhoff map. The semiclassical
quantization of the Birkhoff map can be subdivided into an entrance and a
repeller. The construction of a scattering operator then follows in exact
analogy to the classical process. Generically, the approximate unitarity of the
semiclassical Birkhoff map is inherited by the S-matrix, even for highly
resonant scattering where direct quantization of the scattering map breaks
down.Comment: 4 latex pages, 5 ps figure
On Conditional Statistics in Scalar Turbulence: Theory vs. Experiment
We consider turbulent advection of a scalar field T(\B.r), passive or
active, and focus on the statistics of gradient fields conditioned on scalar
differences across a scale . In particular we focus on two
conditional averages and
. We find exact relations between
these averages, and with the help of the fusion rules we propose a general
representation for these objects in terms of the probability density function
of . These results offer a new way to analyze
experimental data that is presented in this paper. The main question that we
ask is whether the conditional average is linear in . We show that there exists a dimensionless
parameter which governs the deviation from linearity. The data analysis
indicates that this parameter is very small for passive scalar advection, and
is generally a decreasing function of the Rayleigh number for the convection
data.Comment: Phys. Rev. E, Submitted. REVTeX, 10 pages, 5 figs. (not included) PS
Source of the paper with figure available at
http://lvov.weizmann.ac.il/onlinelist.html#unpub
Anomalous Scaling in a Model of Passive Scalar Advection: Exact Results
Kraichnan's model of passive scalar advection in which the driving velocity
field has fast temporal decorrelation is studied as a case model for
understanding the appearance of anomalous scaling in turbulent systems. We
demonstrate how the techniques of renormalized perturbation theory lead (after
exact resummations) to equations for the statistical quantities that reveal
also non perturbative effects. It is shown that ultraviolet divergences in the
diagrammatic expansion translate into anomalous scaling with the inner length
acting as the renormalization scale. In this paper we compute analytically the
infinite set of anomalous exponents that stem from the ultraviolet divergences.
Notwithstanding, non-perturbative effects furnish a possibility of anomalous
scaling based on the outer renormalization scale. The mechanism for this
intricate behavior is examined and explained in detail. We show that in the
language of L'vov, Procaccia and Fairhall [Phys. Rev. E {\bf 50}, 4684 (1994)]
the problem is ``critical" i.e. the anomalous exponent of the scalar primary
field . This is precisely the condition that allows for
anomalous scaling in the structure functions as well, and we prove that this
anomaly must be based on the outer renormalization scale. Finally, we derive
the scaling laws that were proposed by Kraichnan for this problem, and show
that his scaling exponents are consistent with our theory.Comment: 43 pages, revtex
- …