43,257 research outputs found

    Poincare's Recurrence Theorem and the Unitarity of the S matrix

    Full text link
    A scattering process can be described by suitably closing the system and considering the first return map from the entrance onto itself. This scattering map may be singular and discontinuous, but it will be measure preserving as a consequence of the recurrence theorem applied to any region of a simpler map. In the case of a billiard this is the Birkhoff map. The semiclassical quantization of the Birkhoff map can be subdivided into an entrance and a repeller. The construction of a scattering operator then follows in exact analogy to the classical process. Generically, the approximate unitarity of the semiclassical Birkhoff map is inherited by the S-matrix, even for highly resonant scattering where direct quantization of the scattering map breaks down.Comment: 4 latex pages, 5 ps figure

    On Conditional Statistics in Scalar Turbulence: Theory vs. Experiment

    Full text link
    We consider turbulent advection of a scalar field T(\B.r), passive or active, and focus on the statistics of gradient fields conditioned on scalar differences ΔT(R)\Delta T(R) across a scale RR. In particular we focus on two conditional averages ⟨∇2T∣ΔT(R)⟩\langle\nabla^2 T\big|\Delta T(R)\rangle and ⟨∣∇T∣2∣ΔT(R)⟩\langle|\nabla T|^2\big|\Delta T(R) \rangle. We find exact relations between these averages, and with the help of the fusion rules we propose a general representation for these objects in terms of the probability density function P(ΔT,R)P(\Delta T,R) of ΔT(R)\Delta T(R). These results offer a new way to analyze experimental data that is presented in this paper. The main question that we ask is whether the conditional average ⟨∇2T∣ΔT(R)⟩\langle\nabla^2 T\big| \Delta T(R)\rangle is linear in ΔT\Delta T. We show that there exists a dimensionless parameter which governs the deviation from linearity. The data analysis indicates that this parameter is very small for passive scalar advection, and is generally a decreasing function of the Rayleigh number for the convection data.Comment: Phys. Rev. E, Submitted. REVTeX, 10 pages, 5 figs. (not included) PS Source of the paper with figure available at http://lvov.weizmann.ac.il/onlinelist.html#unpub

    Anomalous Scaling in a Model of Passive Scalar Advection: Exact Results

    Full text link
    Kraichnan's model of passive scalar advection in which the driving velocity field has fast temporal decorrelation is studied as a case model for understanding the appearance of anomalous scaling in turbulent systems. We demonstrate how the techniques of renormalized perturbation theory lead (after exact resummations) to equations for the statistical quantities that reveal also non perturbative effects. It is shown that ultraviolet divergences in the diagrammatic expansion translate into anomalous scaling with the inner length acting as the renormalization scale. In this paper we compute analytically the infinite set of anomalous exponents that stem from the ultraviolet divergences. Notwithstanding, non-perturbative effects furnish a possibility of anomalous scaling based on the outer renormalization scale. The mechanism for this intricate behavior is examined and explained in detail. We show that in the language of L'vov, Procaccia and Fairhall [Phys. Rev. E {\bf 50}, 4684 (1994)] the problem is ``critical" i.e. the anomalous exponent of the scalar primary field Δ=Δc\Delta=\Delta_c. This is precisely the condition that allows for anomalous scaling in the structure functions as well, and we prove that this anomaly must be based on the outer renormalization scale. Finally, we derive the scaling laws that were proposed by Kraichnan for this problem, and show that his scaling exponents are consistent with our theory.Comment: 43 pages, revtex
    • …
    corecore