761 research outputs found
An iterative procedure to obtain inverse response functions for thick-target correction of measured charged-particle spectra
A new method for correcting charged-particle spectra for thick target effects
is described. Starting with a trial function, inverse response functions are
found by an iterative procedure. The variances corresponding to the measured
spectrum are treated similiarly and in parallel. Oscillations of the solution
are avoided by rebinning the data to finer bins during a correction iteration
and back to the original or wider binning after each iteration. This
thick-target correction method has been used for data obtained with the MEDLEY
facility at the The Svedberg Laboratory, Uppsala, Sweden, and is here presented
in detail and demonstrated for two test cases.Comment: 14 pages, 8 figures, submitted to NIM
Tutorial on Neutron Physics in Dosimetry
Almost since the time of the discovery of the neutron more than 70 years ago,
efforts have been made to understand the effects of neutron radiation on tissue
and, eventually, to use neutrons for cancer treatment. In contrast to charged
particle or photon radiations which directly lead to release of electrons,
neutrons interact with the nucleus and induce emission of several different
types of charged particles such as protons, alpha particles or heavier ions.
Therefore, a fundamental understanding of the neutron-nucleus interaction is
necessary for dose calculations and treatment planning with the needed
accuracy. We will discuss the concepts of dose and kerma, neutron-nucleus
interactions and have a brief look at nuclear data needs and experimental
facilities and set-ups where such data are measured.Comment: Invited talk at the 11th Neutron and Ion Dosimetry Symposium
NEUDOS-11, October 11-16, 2009, Cape Town, South Africa. 14 pages, 8 figures;
submitted to Radiation Measurement
Light-ion production in the interaction of 96 MeV neutrons with oxygen
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha)
production in oxygen, induced by 96 MeV neutrons are reported. Energy spectra
are measured at eight laboratory angles from 20 degrees to 160 degrees in steps
of 20 degrees. Procedures for data taking and data reduction are presented.
Deduced energy-differential and production cross sections are reported.
Experimental cross sections are compared to theoretical reaction model
calculations and experimental data at lower neutron energies in the literature.
The measured proton data agree reasonably well with the results of the model
calculations, whereas the agreement for the other particles is less convincing.
The measured production cross sections for protons, deuterons, tritons and
alpha particles support the trends suggested by data at lower energies.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Ion counting efficiencies at the IGISOL facility
At the IGISOL-JYFLTRAP facility, fission mass yields can be studied at high
precision. Fission fragments from a U target are passing through a Ni foil and
entering a gas filled chamber. The collected fragments are guided through a
mass separator to a Penning trap where their masses are identified. This
simulation work focuses on how different fission fragment properties (mass,
charge and energy) affect the stopping efficiency in the gas cell. In addition,
different experimental parameters are varied (e. g. U and Ni thickness and He
gas pressure) to study their impact on the stopping efficiency. The simulations
were performed using the Geant4 package and the SRIM code. The main results
suggest a small variation in the stopping efficiency as a function of mass,
charge and kinetic energy. It is predicted that heavy fragments are stopped
about 9% less efficiently than the light fragments. However it was found that
the properties of the U, Ni and the He gas influences this behavior. Hence it
could be possible to optimize the efficiency.Comment: 52 pages, 44 figure
Characterization of a Be(p,xn) neutron source for fission yields measurements
We report on measurements performed at The Svedberg Laboratory (TSL) to
characterize a proton-neutron converter for independent fission yield studies
at the IGISOL-JYFLTRAP facility (Jyv\"askyl\"a, Finland). A 30 MeV proton beam
impinged on a 5 mm water-cooled Beryllium target. Two independent experimental
techniques have been used to measure the neutron spectrum: a Time of Flight
(TOF) system used to estimate the high-energy contribution, and a Bonner Sphere
Spectrometer able to provide precise results from thermal energies up to 20
MeV. An overlap between the energy regions covered by the two systems will
permit a cross-check of the results from the different techniques. In this
paper, the measurement and analysis techniques will be presented together with
some preliminary results.Comment: 3 pages, 3 figures, also submitted as proceedings of the
International Conference on Nuclear Data for Science and Technology 201
Measurement of the Absolute np Scattering Differential Cross Section at 194 MeV
We describe a double-scattering experiment with a novel tagged neutron beam
to measure differential cross sections for np back-scattering to better than 2%
absolute precision. The measurement focuses on angles and energies where the
cross section magnitude and angle-dependence constrain the charged pion-nucleon
coupling constant, but existing data show serious discrepancies among
themselves and with energy-dependent partial wave analyses (PWA). The present
results are in good accord with the PWA, but deviate systematically from other
recent measurements.Comment: 4 pages, 4 figure
Light-ion Production And Fission Studies Using The Medley Facility At Tsl
oS(FNDA2006)001 © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence
- …
