5,755 research outputs found
A simple and efficient approach to the optimization of correlated wave functions
We present a simple and efficient method to optimize within energy
minimization the determinantal component of the many-body wave functions
commonly used in quantum Monte Carlo calculations. The approach obtains the
optimal wave function as an approximate perturbative solution of an effective
Hamiltonian iteratively constructed via Monte Carlo sampling. The effectiveness
of the method as well as its ability to substantially improve the accuracy of
quantum Monte Carlo calculations is demonstrated by optimizing a large number
of parameters for the ground state of acetone and the difficult case of the
state of hexatriene.Comment: 5 pages, 1 figur
On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo
Approximate Bayesian computation (ABC) has gained popularity over the past few years for the analysis of complex models arising in population genetics, epidemiology and system biology. Sequential Monte Carlo (SMC) approaches have become work-horses in ABC. Here we discuss how to construct the perturbation kernels that are required in ABC SMC approaches, in order to construct a sequence of distributions that start out from a suitably defined prior and converge towards the unknown posterior. We derive optimality criteria for different kernels, which are based on the Kullback-Leibler divergence between a distribution and the distribution of the perturbed particles. We will show that for many complicated posterior distributions, locally adapted kernels tend to show the best performance. We find that the added moderate cost of adapting kernel functions is easily regained in terms of the higher acceptance rate. We demonstrate the computational efficiency gains in a range of toy examples which illustrate some of the challenges faced in real-world applications of ABC, before turning to two demanding parameter inference problems in molecular biology, which highlight the huge increases in efficiency that can be gained from choice of optimal kernels. We conclude with a general discussion of the rational choice of perturbation kernels in ABC SMC settings
Interaction modeling based on human behavior classification
The variety of human behaviors makes user-product interaction difficult to manage and foresee, especially concerning users running into problems. This research considers several interaction problems and identifies recurring behaviors. Then, it highlights the users, products and environments' aspects corresponding to each of these behaviors. This makes possible foreseeing the behavior of specific users who run into problems while interacting with specific products in specific environments. The results are used to upgrade an existing user-product interaction modeling approach in order to make it able to suggest better-focused product improvements to designers as well as alternative problem solving to different users
La resignificación de la ley moral natural en el pensamiento medieval
The notion of natural law was to a great extent discovered by the
Greeks. Although formulated for the first time by the Stoics, there
are important precedents in previous philosophers and tragic writers.
Nevertheless, the coming of Christianity, by virtue of its concept
of creation, brought along a different notion of God and nature.
This meant a decisive change in the notion of the natural law,
which we will highlight in these pages
Early assessment of vestibular function after unilateral cochlear implant surgery
Introduction : Cochlear implantation (CI) has been reported to negatively effect on the vestibular function. The study of the vestibular function has variably been conducted by different types of diagnostic tools. The combined use of modern, rapidly performable diagnostic tools could reveal useful for standardizing the evaluation protocol.
Methods: In a group of 28 subjects undergoing CI, the video Head Impulse Test (vHIT), the cervical Vestibular Evoked Myogenic Potentials (cVEMPS) and the short-form of Dizziness Handicap Inventory (DHI) questionnaire were investigated pre-operatively and post-operatively (implant on and off) in both the implanted and the contralateral, non-implanted ear. All surgeries were performed with a round window approach (RWA), except for three otosclerosis cases were the extended RWA (eRWA) was used.
Results: The vHIT of the lateral semicircular canal showed a pre-operative vestibular involvement in nearly 50% of the cases, whilst the three canals were contemporarily affected in only 14% of them. In all the hypo-functional subjects, cVEMPs were absent. A low VOR gain in all the investigated SSCC was found in 4 subjects (14%). In those subjects, (21.7%) in whom cVEMPs were pre-operatively present and normal in the operated side, absence of response was post-operatives recorded.
Discussion/Conclusion: The vestibular protocol applied for the study showed to be appropriate for distinguishing between the CI operated and the non-operated ear. In this regard, cVEMPs showed to be more sensitive than vHIT for revealing a vestibular sufferance after CI, although without statistical significance. Finally, the use of the RWA surgery was apparently not avoiding signs of vestibular impairment to occur
Alleviation of the Fermion-sign problem by optimization of many-body wave functions
We present a simple, robust and highly efficient method for optimizing all
parameters of many-body wave functions in quantum Monte Carlo calculations,
applicable to continuum systems and lattice models. Based on a strong
zero-variance principle, diagonalization of the Hamiltonian matrix in the space
spanned by the wav e function and its derivatives determines the optimal
parameters. It systematically reduces the fixed-node error, as demonstrated by
the calculation of the binding energy of the small but challenging C
molecule to the experimental accuracy of 0.02 eV
Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics
We numerically investigate the role of mechanical stress in modifying the
conductivity properties of the cardiac tissue and its impact in computational
models for cardiac electromechanics. We follow a theoretical framework recently
proposed in [Cherubini, Filippi, Gizzi, Ruiz-Baier, JTB 2017], in the context
of general reaction-diffusion-mechanics systems using multiphysics continuum
mechanics and finite elasticity. In the present study, the adapted models are
compared against preliminary experimental data of pig right ventricle
fluorescence optical mapping. These data contribute to the characterization of
the observed inhomogeneity and anisotropy properties that result from
mechanical deformation. Our novel approach simultaneously incorporates two
mechanisms for mechano-electric feedback (MEF): stretch-activated currents
(SAC) and stress-assisted diffusion (SAD); and we also identify their influence
into the nonlinear spatiotemporal dynamics. It is found that i) only specific
combinations of the two MEF effects allow proper conduction velocity
measurement; ii) expected heterogeneities and anisotropies are obtained via the
novel stress-assisted diffusion mechanisms; iii) spiral wave meandering and
drifting is highly mediated by the applied mechanical loading. We provide an
analysis of the intrinsic structure of the nonlinear coupling using
computational tests, conducted using a finite element method. In particular, we
compare static and dynamic deformation regimes in the onset of cardiac
arrhythmias and address other potential biomedical applications
- …