28,312 research outputs found

    Charmless Non-Leptonic B Decays and R-parity Violating Supersymmetry

    Get PDF
    We examine the charmless hadronic B decay modes in the context of R-parity violating (\rpv) supersymmetry. We try to explain the large branching ratio (compared to the Standard Model (SM) prediction) of the decay B±→η′K±B^{\pm}\to \eta' K^{\pm}. There exist data for other observed η(′)\eta^{(\prime)} modes and among these modes, the decay B0→ηK∗0B^{0}\to \eta K^{*0} is also found to be large compared to the SM prediction. We investigate all these modes and find that only two pairs of \rpv coupling can satisfy the requirements without affecting the other B\ra PP and B\ra VP decay modes barring the decay B\ra\phi K. From this analysis, we determine the preferred values of the \rpv couplings and the effective number of color NcN_c. We also calculate the CP asymmetry for the observed decay modes affected by these new couplings.Comment: 14 pages, 7 figures; revtex; version published in Phys. Lett.

    Hadronic B Decays to Charmless VT Final States

    Get PDF
    Charmless hadronic decays of B mesons to a vector meson (V) and a tensor meson (T) are analyzed in the frameworks of both flavor SU(3) symmetry and generalized factorization. We also make comments on B decays to two tensor mesons in the final states. Certain ways to test validity of the generalized factorization are proposed, using B→VTB \to VT decays. We calculate the branching ratios and CP asymmetries using the full effective Hamiltonian including all the penguin operators and the form factors obtained in the non-relativistic quark model of Isgur, Scora, Grinstein and Wise.Comment: 27 pages, no figures, LaTe

    Regulation of the Neuron-specific Ras GTPase-activating Protein, synGAP, by Ca2+/Calmodulin-dependent Protein Kinase II

    Get PDF
    synGAP is a neuron-specific Ras GTPase-activating protein found in high concentration in the postsynaptic density fraction from mammalian forebrain. Proteins in the postsynaptic density, including synGAP, are part of a signaling complex attached to the cytoplasmic tail of the N-methyl-D-aspartate-type glutamate receptor. synGAP can be phosphorylated by a second prominent component of the complex, Ca2+/calmodulin-dependent protein kinase II. Here we show that phosphorylation of synGAP by Ca2+/calmodulin-dependent protein kinase II increases its Ras GTPase-activating activity by 70-95%. We identify four major sites of phosphorylation, serines 1123, 1058, 750/751/756, and 764/765. These sites together with other minor phosphorylation sites in the carboxyl tail of synGAP control stimulation of GTPase-activating activity. When three of these sites and four other serines in the carboxyl tail are mutated, stimulation of GAP activity after phosphorylation is reduced to 21 ± 5% compared with 70-95% for the wild type protein. We used phosphosite-specific antibodies to show that, as predicted, phosphorylation of serines 765 and 1123 is increased in cultured cortical neurons after exposure of the neurons to the agonist N-methyl-D-aspartate

    The Effects of Dark Matter Decay and Annihilation on the High-Redshift 21 cm Background

    Get PDF
    The radiation background produced by the 21 cm spin-flip transition of neutral hydrogen at high redshifts can be a pristine probe of fundamental physics and cosmology. At z~30-300, the intergalactic medium (IGM) is visible in 21 cm absorption against the cosmic microwave background (CMB), with a strength that depends on the thermal (and ionization) history of the IGM. Here we examine the constraints this background can place on dark matter decay and annihilation, which could heat and ionize the IGM through the production of high-energy particles. Using a simple model for dark matter decay, we show that, if the decay energy is immediately injected into the IGM, the 21 cm background can detect energy injection rates >10^{-24} eV cm^{-3} sec^{-1}. If all the dark matter is subject to decay, this allows us to constrain dark matter lifetimes <10^{27} sec. Such energy injection rates are much smaller than those typically probed by the CMB power spectra. The expected brightness temperature fluctuations at z~50 are a fraction of a mK and can vary from the standard calculation by up to an order of magnitude, although the difference can be significantly smaller if some of the decay products free stream to lower redshifts. For self-annihilating dark matter, the fluctuation amplitude can differ by a factor <2 from the standard calculation at z~50. Note also that, in contrast to the CMB, the 21 cm probe is sensitive to both the ionization fraction and the IGM temperature, in principle allowing better constraints on the decay process and heating history. We also show that strong IGM heating and ionization can lead to an enhanced H_2 abundance, which may affect the earliest generations of stars and galaxies.Comment: submitted to Phys Rev D, 14 pages, 8 figure
    • …
    corecore