14 research outputs found

    A unified approach to combinatorial key predistribution schemes for sensor networks

    Get PDF
    There have been numerous recent proposals for key predistribution schemes for wireless sensor networks based on various types of combinatorial structures such as designs and codes. Many of these schemes have very similar properties and are analysed in a similar manner. We seek to provide a unified framework to study these kinds of schemes. To do so, we define a new, general class of designs, termed “partially balanced t-designs”, that is sufficiently general that it encompasses almost all of the designs that have been proposed for combinatorial key predistribution schemes. However, this new class of designs still has sufficient structure that we are able to derive general formulas for the metrics of the resulting key predistribution schemes. These metrics can be evaluated for a particular scheme simply by substituting appropriate parameters of the underlying combinatorial structure into our general formulas. We also compare various classes of schemes based on different designs, and point out that some existing proposed schemes are in fact identical, even though their descriptions may seem different. We believe that our general framework should facilitate the analysis of proposals for combinatorial key predistribution schemes and their comparison with existing schemes, and also allow researchers to easily evaluate which scheme or schemes present the best combination of performance metrics for a given application scenario

    Securing sensor networks by moderating frequencies

    Full text link
    Security of Wireless Sensor Network (WSN) is a key issue in information security. Most existing security protocols exploit various Mathematical tools to strengthen their security. Some protocols use the details of the geographical location of the nodes. However, to the best authors’ knowledge, none of the existing works exploit the constraints faced by the adversary, specifically, tracing a particular frequency from a large range of unknown frequency channels. The current work uses positional details of the individual nodes. Then the aim is to exploit this weakness of tracing frequencies by assigning a wide range of frequency channels to each node. Experiments using Magneto Optic Sensors reveal that any change of the parametric Faraday’s rotational angle affects the frequency of the Optical waves. This idea can perhaps be generalized for practically deployable sensors (having respective parameters) along with a suitable key management scheme
    corecore