28 research outputs found
A coarse graining approach to determine nucleic acid structures from small angle neutron scattering profiles in solution
We present a theoretical method to calculate the small angle neutron scattering profile of nucleic acid structures in solution. Our approach is sensitive to the sequence and the structure of the nucleic acid. In order to test our approach, we apply this method to the calculation of the experimental scattered intensity of the decamer d(CCAACGTTGG)(2) in H(2)O. This sequence was specifically chosen for this study as it is believed to adopt a canonical B-form structure in 0.3 M NaCl. We find that not only will our methodology reproduce the experimental scattered intensity for this sequence, but our method will also discriminate between B-, A- and Z-form DNA. By studying the scattering profile of this structure in 0.5 and 1.0 M NaCl, we are also able to identify tetraplex and other similar oligomers formation and to model the complex using the experimental scattering data in conjunction with our methodology
Unbiased Global Optimization of Lennard-Jones Clusters for N <= 201 by Conformational Space Annealing Method
We apply the conformational space annealing (CSA) method to the Lennard-Jones
clusters and find all known lowest energy configurations up to 201 atoms,
without using extra information of the problem such as the structures of the
known global energy minima. In addition, the robustness of the algorithm with
respect to the randomness of initial conditions of the problem is demonstrated
by ten successful independent runs up to 183 atoms. Our results indicate that
the CSA method is a general and yet efficient global optimization algorithm
applicable to many systems.Comment: revtex, 4 pages, 2 figures. Physical Review Letters, in pres
Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms
We describe a global optimization technique using `basin-hopping' in which
the potential energy surface is transformed into a collection of
interpenetrating staircases. This method has been designed to exploit the
features which recent work suggests must be present in an energy landscape for
efficient relaxation to the global minimum. The transformation associates any
point in configuration space with the local minimum obtained by a geometry
optimization started from that point, effectively removing transition state
regions from the problem. However, unlike other methods based upon hypersurface
deformation, this transformation does not change the global minimum. The lowest
known structures are located for all Lennard-Jones clusters up to 110 atoms,
including a number that have never been found before in unbiased searches.Comment: 8 pages, 3 figures, revte
Recommended from our members
AB Initio Protein Tertiary Structure Prediction: Comparative-Genetic Algorithm with Graph Theoretical Methods
During the period from September 1, 1998 until September 1, 2000 I was awarded a Sloan/DOE postdoctoral fellowship to work in collaboration with Professor John Moult at the Center for Advanced Research in Biotechnology (CARB). Our research project, ''Ab Initio Protein Tertiary Structure Prediction and a Comparative Genetic algorithm'', yielded promising initial results. In short, the project is designed to predict the native fold, or native tertiary structure, of a given protein by inputting only the primary sequence of the protein (one or three letter code). The algorithm is based on a general learning, or evolutionary algorithm and is called Genetic Algorithm (GAS). In our particular application of GAS, we search for native folds, or lowest energy structures, using two different descriptions for the interactions of the atoms and residues in a given protein sequence. One potential energy function is based on a free energy description, while the other function is a threading potential derived by Moult and Samudrala. This modified genetic algorithm was loosely termed a Comparative Genetic Algorithm and was designed to search for native folded structures on both potential energy surfaces, simultaneously. We tested the algorithm on a series of peptides ranging from 11 to 15 residues in length, which are thought to be independent folding units and thereby will fold to native structures independent of the larger protein environment. Our initial results indicated a modest increase in accuracy, as compared to a standard Genetic Algorithm. We are now in the process of improving the algorithm to increase the sensitivity to other inputs, such as secondary structure requirements. The project did not involve additional students and as of yet, the work has not been published
Recommended from our members
Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop
Biology has entered a systems-science era with the goal to establish a predictive understanding of the mechanisms of cellular function and the interactions of biological systems with their environment and with each other. Vast amounts of data on the composition, physiology, and function of complex biological systems and their natural environments are emerging from new analytical technologies. Effectively exploiting these data requires developing a new generation of capabilities for analyzing and managing the information. By revealing the core principles and processes conserved in collective genomes across all biology and by enabling insights into the interplay between an organism's genotype and its environment, systems biology will allow scientific breakthroughs in our ability to project behaviors of natural systems and to manipulate and engineer managed systems. These breakthroughs will benefit Department of Energy (DOE) missions in energy security, climate protection, and environmental remediation
Experimental and Computational Studies of the Desensitization Process in the Bovine Rhodopsin-Arrestin Complex
The deactivation of the bovine G-protein-coupled receptor, rhodopsin, is a two-step process consisting of the phosphorylation of specific serine and threonine residues in the cytoplasmic tail of rhodopsin by rhodopsin kinase. Subsequent binding of the regulatory protein arrestin follows this phosphorylation. Previous results find that at least three phosphorylatable sites on the rhodopsin tail (T(340)) and at least two of the S(338), S(334), or S(343) sites are needed for complete arrestin-mediated deactivation. Thus, to elucidate the details of the interaction between rhodopsin with arrestin, we have employed both a computational and an in vitro experimental approach. In this work, we first simulated the interaction of the carboxy tail of rhodopsin with arrestin using a Monte Carlo simulated annealing method. Since at this time phosphorylation of specific serines and threonines is not possible in our simulations, we substitute either aspartic or glutamic acid residues for the negatively charged phosphorylated residues required for binding. A total of 17 simulations were performed and analysis of this shows specific charge-charge interactions of the carboxy tail of rhodopsin with arrestin. We then confirmed these computational results with assays of comparable constructed rhodopsin mutations using our in vitro assay. This dual computational/experimental approach indicates that sites S(334), S(338), and T(340) in rhodopsin and K(14) and K(15) on arrestin are indeed important in the interaction of rhodopsin with arrestin, with a possible weaker S(343) (rhodopsin)/K(15) (arrestin) interaction
CW THZ SPECTROSCOPY OF SMALL PEPTIDES
Author Institution: National Institute of Standards and Technology, Gaithersburg MD 20899 USA; Dept. of Chemistry and Biochemistry, University of Maryland, Baltimore, MD 21250; National Institute of Standards and Technology, Gaithersburg MD 20899 USACW THz spectroscopy has been used to investigate the lowest frequency vibrational modes of small peptides. Due to their non-local character, these large amplitude modes are remarkably sensitive to intermolecular hydrogen bonding. THz spectra obtained from 2 \wn to 100 \wn, for three different crystalline forms of alanine tripeptide at 4.2 K were all quite different. These three forms included one parallel and two anti-parallel beta sheet structures. The latter two forms differ only in the presence and absence of water molecules that bridge and cross link the sheets. Despite the weak nature of the water hydrogen bonds, the THz spectra for the hydrated and dehydrated antiparallel structures of trialanine are drastically different, while spectra observed for the two forms in the mid-infrared region were indistinguishable. Together with data obtained at intermediate hydration levels, these results provide insight into the nature and scope of forces fields necessary to model these low energy interactions. Spectral predictions obtained for crystal-like structures using the CHARMM force field and for various dimer forms from density functional theory will be discussed