195 research outputs found

    Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order

    Get PDF
    The Lieb-Robinson bound states that local Hamiltonian evolution in nonrelativistic quantum mechanical theories gives rise to the notion of an effective light cone with exponentially decaying tails. We discuss several consequences of this result in the context of quantum information theory. First, we show that the information that leaks out to spacelike separated regions is negligible and that there is a finite speed at which correlations and entanglement can be distributed. Second, we discuss how these ideas can be used to prove lower bounds on the time it takes to convert states without topological quantum order to states with that property. Finally, we show that the rate at which entropy can be created in a block of spins scales like the boundary of that block

    Universal topological phase of 2D stabilizer codes

    Full text link
    Two topological phases are equivalent if they are connected by a local unitary transformation. In this sense, classifying topological phases amounts to classifying long-range entanglement patterns. We show that all 2D topological stabilizer codes are equivalent to several copies of one universal phase: Kitaev's topological code. Error correction benefits from the corresponding local mappings.Comment: 4 pages, 3 figure

    A short proof of stability of topological order under local perturbations

    Full text link
    Recently, the stability of certain topological phases of matter under weak perturbations was proven. Here, we present a short, alternate proof of the same result. We consider models of topological quantum order for which the unperturbed Hamiltonian H0H_0 can be written as a sum of local pairwise commuting projectors on a DD-dimensional lattice. We consider a perturbed Hamiltonian H=H0+VH=H_0+V involving a generic perturbation VV that can be written as a sum of short-range bounded-norm interactions. We prove that if the strength of VV is below a constant threshold value then HH has well-defined spectral bands originating from the low-lying eigenvalues of H0H_0. These bands are separated from the rest of the spectrum and from each other by a constant gap. The width of the band originating from the smallest eigenvalue of H0H_0 decays faster than any power of the lattice size.Comment: 15 page

    Classification of the phases of 1D spin chains with commuting Hamiltonians

    Full text link
    We consider the class of spin Hamiltonians on a 1D chain with periodic boundary conditions that are (i) translational invariant, (ii) commuting and (iii) scale invariant, where by the latter we mean that the ground state degeneracy is independent of the system size. We correspond a directed graph to a Hamiltonian of this form and show that the structure of its ground space can be read from the cycles of the graph. We show that the ground state degeneracy is the only parameter that distinguishes the phases of these Hamiltonians. Our main tool in this paper is the idea of Bravyi and Vyalyi (2005) in using the representation theory of finite dimensional C^*-algebras to study commuting Hamiltonians.Comment: 8 pages, improved readability, added exampl

    Topological Order at Non-zero Temperature

    Full text link
    We propose a definition for topological order at nonzero temperature in analogy to the usual zero temperature definition that a state is topologically ordered, or "nontrivial", if it cannot be transformed into a product state (or a state close to a product state) using a local (or approximately local) quantum circuit. We prove that any two dimensional Hamiltonian which is a sum of commuting local terms is not topologically ordered at T>0T>0. We show that such trivial states cannot be used to store quantum information using certain stringlike operators. This definition is not too restrictive, however, as the four dimensional toric code does have a nontrivial phase at nonzero temperature.Comment: 4 pages, 1 figure; added appendix describing toy example and also showing triviality of three dimensional toric code at T>

    Clifford Gates by Code Deformation

    Full text link
    Topological subsystem color codes add to the advantages of topological codes an important feature: error tracking only involves measuring 2-local operators in a two dimensional setting. Unfortunately, known methods to compute with them were highly unpractical. We give a mechanism to implement all Clifford gates by code deformation in a planar setting. In particular, we use twist braiding and express its effects in terms of certain colored Majorana operators.Comment: Extended version with more detail

    The Fragility of Quantum Information?

    Full text link
    We address the question whether there is a fundamental reason why quantum information is more fragile than classical information. We show that some answers can be found by considering the existence of quantum memories and their dimensional dependence.Comment: Essay on quantum information: no new results. Ten pages, published in Lec. Notes in Comp. Science, Vol. 7505, pp. 47-56 (2012. One reference adde

    Towards practical classical processing for the surface code

    Full text link
    The surface code is unarguably the leading quantum error correction code for 2-D nearest neighbor architectures, featuring a high threshold error rate of approximately 1%, low overhead implementations of the entire Clifford group, and flexible, arbitrarily long-range logical gates. These highly desirable features come at the cost of significant classical processing complexity. We show how to perform the processing associated with an nxn lattice of qubits, each being manipulated in a realistic, fault-tolerant manner, in O(n^2) average time per round of error correction. We also describe how to parallelize the algorithm to achieve O(1) average processing per round, using only constant computing resources per unit area and local communication. Both of these complexities are optimal.Comment: 5 pages, 6 figures, published version with some additional tex
    • …
    corecore