764 research outputs found

    Tunable Kondo effect in a single donor atom

    Full text link
    The Kondo effect has been observed in a single gate-tunable atom. The measurement device consists of a single As dopant incorporated in a Silicon nanostructure. The atomic orbitals of the dopant are tunable by the gate electric field. When they are tuned such that the ground state of the atomic system becomes a (nearly) degenerate superposition of two of the Silicon valleys, an exotic and hitherto unobserved valley Kondo effect appears. Together with the regular spin Kondo, the tunable valley Kondo effect allows for reversible electrical control over the symmetry of the Kondo ground state from an SU(2)- to an SU(4) -configuration.Comment: 10 pages, 8 figure

    Evidence for Factorization in Three-body B --> D(*) K- K0 Decays

    Full text link
    Motivated by recent experimental results, we use a factorization approach to study the three-body B --> D(*) K- K0 decay modes. Two mechanisms are proposed for kaon pair production: current-produced (from vacuum) and transition (from B meson). The Bbar0 --> D(*)+ K- K0 decay is governed solely by the current-produced mechanism. As the kaon pair can be produced only by the vector current, the matrix element can be extracted from e+ e- --> K Kbar processes via isospin relations. The decay rates obtained this way are in good agreement with experiment. Both current-produced and transition processes contribute to B- --> D(*)0 K- K0 decays. By using QCD counting rules and the measured B- --> D(*)0 K- K0 decay rates, the measured decay spectra can be understood.Comment: 17 pages, 6 figure

    The Pro-Survival Oct4/Stat1/Mcl-1 Axis Is Associated with Poor Prognosis in Lung Adenocarcinoma Patients.

    Get PDF
    The embryonic stem cell marker Oct4 is expressed in several human cancers and is positively correlated with a poor outcome in cancer patients. However, its physiological role in cancer progression remains poorly understood. Tumor cells block apoptosis to escape cell death so that they can proliferate indefinitely, leading to ineffective therapy for cancer patients. In this study, we investigated whether Oct4 regulates the apoptosis pathway and contributes to poor prognosis in patients with lung adenocarcinoma. Our results revealed that Oct4 expression is correlated with Stat1 expression in lung adenocarcinoma patients and Oct4 is directly bound to the Stat1 promoter to transactivate Stat1 in lung adenocarcinoma cells. Expression of the Stat1 downstream gene Mcl-1 increased in Oct4-overexpressing cancer cells, while Stat1 knockdown in Oct4-overexpressing cancer cells sensitized them to cisplatin-induced apoptosis. Furthermore, Oct4 promoted Stat1 expression and tumor growth, whereas silencing of Stat1 reduced Oct4-induced tumor growth in human lung tumor xenograft models. Taken together, we demonstrate that Oct4 is a pro-survival factor by inducing Stat1 expression and that the Oct4/Stat1/Mcl-1 axis may be a potential therapeutic target for lung adenocarcinoma

    Finite element model with imposed slip surfaces for earth mass safety evaluation

    Get PDF
    The study of earth masses requires numerical methods that provide the quantification of the safety factor without requiring detrimental assumptions. For that, equilibrium analysis can perform fast computations but require assumptions that limit its potentiality. Limit analysis does not require detrimental assumptions but are numerically demanding. This work provides a new approach that combines the advantage of both the equilibrium method and the limit analysis. The defined hybrid model allows probabilistic analysis and optimization approaches without the assumption of interslice forces. It is compared with a published case and used to perform probabilistic studies in both a homogeneous and a layered foundation. Analyses show that the shape of the density probability functions is highly relevant when computing the probability of failure, and soil elasticity hardly affects the safety of factor of the earth mass.Programa Operacional Factores de Competitividade—COMPETE, and by Portuguese Funds through FCT–Fundação para a Ciência e a Tecnologia, within the projects PEst –C/MAT/UI0013/2011 and PEst–OE/ECM/UI4047/2011

    Early‐onset coenzyme Q10 deficiency associated with ataxia and respiratory chain dysfunction due to novel pathogenic COQ8A variants, including a large intragenic deletion

    Get PDF
    Coenzyme Q10 (CoQ10) deficiency is a clinically and genetically heterogeneous subtype of mitochondrial disease. We report two girls with ataxia and mitochondrial respiratory chain deficiency who were shown to have primary CoQ10 deficiency. Muscle histochemistry displayed signs of mitochondrial dysfunction—ragged red fibers, mitochondrial paracrystalline inclusions, and lipid deposits while biochemical analyses revealed complex II+III respiratory chain deficiencies. MRI brain demonstrated cerebral and cerebellar atrophy. Targeted molecular analysis identified a homozygous c.1015G>A, p.(Ala339Thr) COQ8A variant in subject 1, while subject 2 was found to harbor a single heterozygous c.1029_1030delinsCA variant predicting a p.Gln343_Val344delinsHisMet amino acid substitution. Subsequent investigations identified a large‐scale COQ8A deletion in trans to the c.1029_1030delinsCA allele. A skin biopsy facilitated cDNA studies that confirmed exon skipping in the fibroblast derived COQ8A mRNA transcript. This report expands the molecular genetic spectrum associated with COQ8A ‐related mitochondrial disease and highlights the importance of thorough investigation of candidate pathogenic variants to establish phase. Rapid diagnosis is of the utmost importance as patients may benefit from therapeutic CoQ10 supplementation

    Novel roles of the chemorepellent axon guidance molecule RGMa in cell migration and adhesion

    Get PDF
    The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent manner. RGMa also stimulated the adhesion of Xenopus animal cap cells, and this adhesion was dependent on neogenin and independent of calcium. To begin to functionally characterize the role of specific domains in RGMa, we assessed the migratory and adhesive activities of deletion mutants. RGMa lacking the partial von Willebrand factor type D (vWF) domain preferentially perturbed cell adhesion, while mutants lacking the RGD motif affected cell migration. We also revealed that manipulating the levels of RGMa in vivo caused major migration defects during Xenopus gastrulation. We have revealed here novel roles of RGMa in cell migration and adhesion and demonstrated that perturbations to the homeostasis of RGMa expression can severely disrupt major morphogenetic events. These results have implications for understanding the role of RGMa in both health and disease
    corecore