3,554 research outputs found
Rotating Black Holes at Future Colliders. III. Determination of Black Hole Evolution
TeV scale gravity scenario predicts that the black hole production dominates
over all other interactions above the scale and that the Large Hadron Collider
will be a black hole factory. Such higher dimensional black holes mainly decay
into the standard model fields via the Hawking radiation whose spectrum can be
computed from the greybody factor. Here we complete the series of our work by
showing the greybody factors and the resultant spectra for the brane localized
spinor and vector field emissions for arbitrary frequencies. Combining these
results with the previous works, we determine the complete radiation spectra
and the subsequent time evolution of the black hole. We find that, for a
typical event, well more than half a black hole mass is emitted when the hole
is still highly rotating, confirming our previous claim that it is important to
take into account the angular momentum of black holes.Comment: typoes in eqs(82)-(84) corrected; version to appear in Phys. Rev. D;
references and a footnote added; same manuscript with high resolution
embedded figures available on
http://www.gakushuin.ac.jp/univ/sci/phys/ida/paper
Recommended from our members
Expression of Heterologous OsDHAR Gene Improves Glutathione (GSH)-Dependent Antioxidant System and Maintenance of Cellular Redox Status in Synechococcus elongatus PCC 7942.
An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress
Structural, elastic and thermal properties of cementite (FeC) calculated using Modified Embedded Atom Method
Structural, elastic and thermal properties of cementite (FeC) were
studied using a Modified Embedded Atom Method (MEAM) potential for iron-carbon
(Fe-C) alloys. Previously developed Fe and C single element potentials were
used to develop an Fe-C alloy MEAM potential, using a statistically-based
optimization scheme to reproduce structural and elastic properties of
cementite, the interstitial energies of C in bcc Fe as well as heat of
formation of Fe-C alloys in L and B structures. The stability of
cementite was investigated by molecular dynamics simulations at high
temperatures. The nine single crystal elastic constants for cementite were
obtained by computing total energies for strained cells. Polycrystalline
elastic moduli for cementite were calculated from the single crystal elastic
constants of cementite. The formation energies of (001), (010), and (100)
surfaces of cementite were also calculated. The melting temperature and the
variation of specific heat and volume with respect to temperature were
investigated by performing a two-phase (solid/liquid) molecular dynamics
simulation of cementite. The predictions of the potential are in good agreement
with first-principles calculations and experiments.Comment: 12 pages, 9 figure
- …