77,301 research outputs found
Local Spin Susceptibility of the S=1/2 Kagome Lattice in ZnCu3(OD)6Cl2
We report single-crystal 2-D NMR investigation of the nearly ideal spin S=1/2
kagome lattice ZnCu3(OD)6Cl2. We successfully identify 2-D NMR signals
originating from the nearest-neighbors of Cu2+ defects occupying Zn sites. From
the 2-D Knight shift measurements, we demonstrate that weakly interacting Cu2+
spins at these defects cause the large Curie-Weiss enhancement toward T=0
commonly observed in the bulk susceptibility data. We estimate the intrinsic
spin susceptibility of the kagome planes by subtracting defect contributions,
and explore several scenarios.Comment: 4 figures; published in PR-B Rapid Communication
Graviton-photon conversion on spin 0 and 1/2 particles
The differential cross-sections for scattering of gravitons into photons on
bosons and fermions are calculated in linearized quantum gravity. They are
found to be strongly peaked in the forward direction and become constant at
high energies. Numerically, they are very small as expected for such
gravitational interactions.Comment: 13 pages, LaTeX with 5 figure
A simulation of the IPS variations from a magnetohydrodynamical simulation
Calculations of the variations of interplanetary scintillation (IPS) from a disturbance simulated by a 3-D magnetohydrodynamical (MHD) model of the solar wind are presented. The simulated maps are compared with observations and it is found that the MHD model reproduces the qualitative features of observed disturbances. The disturbance produced by the MHD simulation is found to correspond in strength with the weakest disturbance which can be reliably detected by existing single station IPS observations
Magnetoresistance in the superconducting state at the (111) LaAlO/SrTiO interface
Condensed matter systems that simultaneously exhibit superconductivity and
ferromagnetism are rare due the antagonistic relationship between conventional
spin-singlet superconductivity and ferromagnetic order. In materials in which
superconductivity and magnetic order is known to coexist (such as some
heavy-fermion materials), the superconductivity is thought to be of an
unconventional nature. Recently, the conducting gas that lives at the interface
between the perovskite band insulators LaAlO (LAO) and SrTiO (STO) has
also been shown to host both superconductivity and magnetism. Most previous
research has focused on LAO/STO samples in which the interface is in the (001)
crystal plane. Relatively little work has focused on the (111) crystal
orientation, which has hexagonal symmetry at the interface, and has been
predicted to have potentially interesting topological properties, including
unconventional superconducting pairing states. Here we report measurements of
the magnetoresistance of (111) LAO/STO heterostructures at temperatures at
which they are also superconducting. As with the (001) structures, the
magnetoresistance is hysteretic, indicating the coexistence of magnetism and
superconductivity, but in addition, we find that this magnetoresistance is
anisotropic. Such an anisotropic response is completely unexpected in the
superconducting state, and suggests that (111) LAO/STO heterostructures may
support unconventional superconductivity.Comment: 6 Pages 4 figure
Recoverable Information and Emergent Conservation Laws in Fracton Stabilizer Codes
We introduce a new quantity, that we term recoverable information, defined
for stabilizer Hamiltonians. For such models, the recoverable information
provides a measure of the topological information, as well as a physical
interpretation, which is complementary to topological entanglement entropy. We
discuss three different ways to calculate the recoverable information, and
prove their equivalence. To demonstrate its utility, we compute recoverable
information for fracton models using all three methods where appropriate. From
the recoverable information, we deduce the existence of emergent
Gauss-law type constraints, which in turn imply emergent conservation
laws for point-like quasiparticle excitations of an underlying topologically
ordered phase.Comment: Added additional cluster model calculation (SPT example) and a new
section discussing the general benefits of recoverable informatio
Superconductivity and Frozen Electronic States at the (111) LaAlO/SrTiO Interface
In spite of Anderson's theorem, disorder is known to affect superconductivity
in conventional s-wave superconductors. In most superconductors, the degree of
disorder is fixed during sample preparation. Here we report measurements of the
superconducting properties of the two-dimensional gas that forms at the
interface between LaAlO (LAO) and SrTiO (STO) in the (111) crystal
orientation, a system that permits \emph{in situ} tuning of carrier density and
disorder by means of a back gate voltage . Like the (001) oriented LAO/STO
interface, superconductivity at the (111) LAO/STO interface can be tuned by
. In contrast to the (001) interface, superconductivity in these (111)
samples is anisotropic, being different along different interface crystal
directions, consistent with the strong anisotropy already observed other
transport properties at the (111) LAO/STO interface. In addition, we find that
the (111) interface samples "remember" the backgate voltage at which they
are cooled at temperatures near the superconducting transition temperature
, even if is subsequently changed at lower temperatures. The low
energy scale and other characteristics of this memory effect ( K)
distinguish it from charge-trapping effects previously observed in (001)
interface samples.Comment: 6 pages, 5 Figure
- …