61,595 research outputs found

    Recent Advances in the Synthetic and Mechanistic Aspects of the Ruthenium-catalyzed Carbon-heteroatom Bond Forming Reactions of Alkenes and Alkynes

    Get PDF
    The group’s recent advances in catalytic carbon-to-heteroatom bond forming reactions of alkenes and alkynes are described. For the C–O bond formation reaction, a well-defined bifunctional ruthenium-amido catalyst has been successfully employed for the conjugate addition of alcohols to acrylic compounds. The ruthenium-hydride complex (PCy3)2(CO)RuHCl was found to be a highly effective catalyst for the regioselective alkyne-to-carboxylic acid coupling reaction in yielding synthetically useful enol ester products. Cationic ruthenium-hydride catalyst generated in-situ from (PCy3)2(CO)RuHCl/HBF4·OEt2 was successfully utilized for both the hydroamination and related C–N bond forming reactions of alkenes. For the C–Si bond formation reaction, regio- and stereoselective dehydrosilylation of alkenes and hydrosilylation of alkynes have been developed by using a well-defined ruthenium-hydride catalyst. Scope and mechanistic aspects of these carbon-to-heteroatom bond forming reactions are discussed

    Collective oscillations of dipolar Bose-Einstein condensates and accurate comparison between contact and dipolar interaction

    Full text link
    We propose a scheme for the measurement of the s-wave scattering length aa of an atom or molecule with significant dipole-dipole interaction with an accuracy at the percent level. The frequencies of the collective oscillations of a Bose-Einstein condensate are shifted by the magnetic dipole interaction. The shift is polarization dependent and proportional to the ratio ϵdd\epsilon_{dd} of dipolar and s-wave coupling constants. Measuring the differences in the frequencies for different polarization we can extract the value of ϵdd\epsilon_{dd} and thus measure aa. We calculate the frequency shifts for a large variety of non-axisymmetric harmonic traps in the Thomas-Fermi limit and find optimal trapping geometries to maximize the shifts.Comment: 4 pages, brief repor

    Calibrating dipolar interaction in an atomic condensate

    Full text link
    We revisit the topic of a dipolar condensate with the recently derived more rigorous pseudo-potential for dipole-dipole interaction [A. Derevianko, Phys. Rev. A {\bf 67}, 033607 (2003)]. Based on the highly successful variational technique, we find that all dipolar effects estimated before (using the bare dipole-dipole interaction) become significantly larger, i.e. are amplified by the new velocity-dependent pseudo-potential, especially in the limit of large or small trap aspect ratios. This result points to a promising prospect for detecting dipolar effects inside an atomic condensate.Comment: 5 figures, to be publishe
    • …
    corecore