172 research outputs found

    Longitudinal assessment of multiple sclerosis with the brain-age paradigm

    Get PDF
    OBJECTIVE: During the natural course of MS, the brain is exposed to ageing as well as disease effects. Brain ageing can be modelled statistically; the so-called 'brain-age' paradigm. Here, we evaluated whether brain-predicted age difference (brain-PAD) was sensitive to the presence of MS, clinical progression and future outcomes. METHODS: In a longitudinal, multi-centre sample of 3,565 MRI scans, in 1,204 MS and clinically-isolated syndrome (CIS) patients and 150 healthy controls (mean follow-up time: patients 3.41 years, healthy controls 1.97 years), we measured 'brain-predicted age' using T1-weighted MRI. We compared brain-PAD between MS and CIS patients and healthy controls, and between disease subtypes. Relationships between brain-PAD and Expanded Disability Status Scale (EDSS) were explored. RESULTS: MS patients had markedly higher brain-PAD than healthy controls (mean brain-PAD +10.3 years [95% CI 8.5, 12.1] versus 4.3 years [-2.1, 6.4], p < 0.001). The highest brain-PADs were in secondary-progressive MS (+19.4 years [17.1, 21.9]). Brain-PAD at study entry predicted time-to-disability progression (hazard ratio 1.02 [1.01, 1.03], p < 0.001); though normalised brain volume was a stronger predictor. Greater annualised brain-PAD increases were associated with greater annualised EDSS score (r = 0.26, p < 0.001). INTERPRETATION: The brain-age paradigm is sensitive to MS-related atrophy and clinical progression. A higher brain-PAD at baseline was associated with more rapid disability progression and the rate of change in brain-PAD related to worsening disability. Potentially, 'brain-age' could be used as a prognostic biomarker in early-stage MS, to track disease progression or stratify patients for clinical trial enrolment. This article is protected by copyright. All rights reserved

    Deep gray matter volume loss drives disability worsening in multiple sclerosis

    Get PDF
    Objective: Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. Methods: We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. Results: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (–1.45%), PPMS (–1.66%), and RRMS (–1.34%) than CIS (–0.88%) and HCs (–0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (–1.21%) was significantly faster than RRMS (–0.76%), CIS (–0.75%), and HCs (–0.51%). Similarly, the rate of parietal GM atrophy in SPMS (–1.24-%) was faster than CIS (–0.63%) and HCs (–0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). Interpretation: This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210–222

    Evaluation of the Frails' Fall Efficacy by Comparing Treatments (EFFECT) on reducing fall and fear of fall in moderately frail older adults: study protocol for a randomised control trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls are common in frail older adults and often result in injuries and hospitalisation. The Nintendo<sup>® </sup>Wii™ is an easily available exercise modality in the community which has been shown to improve lower limb strength and balance. However, not much is known on the effectiveness of the Nintendo<sup>® </sup>Wii™ to improve fall efficacy and reduce falls in a moderately frail older adult. Fall efficacy is the measure of fear of falling in performing various daily activities. Fear contributes to avoidance of activities and functional decline.</p> <p>Methods</p> <p>This randomised active-control trial is a comparison between the Nintendo WiiActive programme against standard gym-based rehabilitation of the older population. Eighty subjects aged above 60, fallers and non-fallers, will be recruited from the hospital outpatient clinic. The primary outcome measure is the Modified Falls Efficacy Scale and the secondary outcome measures are self-reported falls, quadriceps strength, walking agility, dynamic balance and quality of life assessments.</p> <p>Discussions</p> <p>The study is the first randomised control trial using the Nintendo Wii as a rehabilitation modality investigating a change in fall efficacy and self-reported falls. Longitudinally, the study will investigate if the interventions can successfully reduce falls and analyse the cost-effectiveness of the programme.</p> <p>Trial registration</p> <p>Australia and New Zealand Clinical Trials Register (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12610000576022.aspx">ACTRN12610000576022</a></p
    corecore