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Abstract
In this paper, we introduce the concept of normed Lie superalgebras and define the
superhomomorphism and the superderivation in normed Lie superalgebras. We
define a generalized T -orbitally complete metric space and prove a new fixed point
alternative concerning the stability problem of functional equations. Consequently,
we deal with the stability of the superhomomorphism and the superderivation in Lie
superalgebras using that new fixed point result. In addition, we find some conditions
under which an approximate superhomomorphism or superderivation is an exact
superhomomorphism or superderivation.
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1 Introduction
Most physicists believe that all of the familiar particle interactions, weak and electromag-
netic as well as strong interactions, are associated with a Lie algebra in similar ways. This
suggests that it may be possible to unify all the particle interactions as different aspects
of a single underlying interaction, based on a single simple Lie algebra. With an increas-
ing amount of theory and applications concerning Lie algebras of various dimensions,
it is becoming necessary to ascertain which tools are applicable for handling them. The
miscellaneous characteristics of Lie algebras constitute such tools and have also found
applications: Casimir operators [], derived, lower central and upper central sequences,
the Lie algebra of derivations, radicals, nilradicals, ideals, subalgebras [, ], and recently
megaideals []. These characteristics are particularly crucial when considering possible
connections among Lie algebras. Physically motivated relations between two Lie algebras,
namely contractions and deformations, have been extensively studied; see e.g. [–].

The concept of Lie algebra can be expressed in several different ways. The most familiar
are in terms of generators and relations and in terms of a bilinear bracket on a vector space
V satisfying the Jacobi identity. In physical notation, let Xa be a basis for V . The bracket
[·, ·] can be specified by structure constants Cc

ab via the formula

[Xa, Xb] = Cc
abXc.

The structure constants are skew-symmetric in the lower indices a, b.
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The derivation of a new Lie superalgebra from given Lie algebras is particularly interest-
ing in physics, since it allows us to find new physical theories from already known theories.
The presentation of Lie superalgebras by a finite set of generators and defining relations
is one of the most general mathematical and algorithmic schemes of their analysis. It is
very important, for instance, for the investigation of the particular Lie superalgebras aris-
ing in different supersymmetric physical models. Palev [] showed that the position and
momentum operators in quantum mechanics and fields in quantum field theory are the
generators of finite-dimensional and infinite-dimensional orthosymplectic Lie superalge-
bras, respectively.

In mathematical analysis, the stability problem is presented as follows: Assume that a
mathematical object satisfies a certain property approximately according to some conven-
tion. Is it then possible to find near this object an object satisfying the property accurately?
The interested reader can find more information on such problems with the emphasis on
functional equations in [–].

In the theory of functional equations, there are cases in which each approximate func-
tion is actually a true function. In such cases, we say that the functional equation is hyper-
stable. Indeed, a functional equation is hyperstable if every solution satisfying the equation
approximately is an exact solution of it. For the history and various aspects of this theory
we refer the reader to [–].

In this paper, we introduce the concept of normed Lie superalgebras. For a continuous
self-mapping T , we define a generalized T-orbitally complete metric space and prove a
new fixed point result. We define a superhomomorphism and a superderivation and in-
vestigate the stability of these linear mathematical objects in Lie superalgebras using the
new fixed point alternative. Moreover, we find some conditions under which an approxi-
mately object is an exact object.

The paper is organized as follows: The concept of normed Lie superalgebras is intro-
duced in Section . In Section , generalized T-orbitally complete metric spaces are de-
fined and a new alternative of fixed point is presented. In Section , we begin to discuss the
stability of the superhomomorphism in Lie superalgebras. Moreover, we find conditions
under which an approximate superhomomorphism is an exact superhomomorphism. In
Section , we deal with the stability of the superderivation in Lie superalgebras. Moreover,
we find conditions under which an approximate superderivation is an exact superderiva-
tion. In Section , an application of the new fixed point theorem to prove the stability of
functional equations is stated.

2 Lie superalgebras
Let Z = {̄, ̄} denote the group of two elements. A superalgebra G = Ḡ ⊕ Ḡ , sometimes
also called a Z-graded algebra, is a direct sum of two spaces Ḡ and Ḡ equipped with a
bilinear multiplication satisfying GiGj ⊆ Gi+j, for i, j ∈ Z. Elements x ∈ Ḡ are called even
or of degree |x| =  while elements x ∈ Ḡ are called odd or of degree |x| = . The interested
reader can find more information about superalgebras in [–].

A Lie superalgebra is an algebra L = L̄ ⊕ L̄ with bilinear multiplication μ : L → L
satisfying the following two axioms: for a, b, c ∈L̄ ∪L̄ :

() Skew-supersymmetry: μ(a, b) = –(–)|a|·|b|μ(b, a).
() Super Jacobi identity: μ(a,μ(b, c)) = μ(μ(a, b), c) + (–)|a|·|b|μ(b,μ(a, c)).
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Definition . LetL = L̄ ⊕L̄ andL′ = L′
̄ ⊕L′

̄ be Lie superalgebras with multiplications
μ and ν , respectively. Additive functions Hi : L→L′ are called homomorphisms of degree
i if

Hi
(
μ(x, y)

)
= ν

(
Hi(x), Hi(y)

)
()

for all x, y ∈ L̄ ∪L̄ . A superhomomorphism H : L → L′ by H = H̄ + H̄ is the sum of a
homomorphism of degree  and a homomorphism of degree .

Definition . Let L = L̄ ⊕ L̄ be a Lie superalgebra with multiplication μ. Additive
functions Di : L→L are called derivation of degree i if

Di
(
μ(x, y)

)
= μ

(
Di(x), y

)
+ (–)i|x|μ

(
x, Di(y)

)
()

for all x, y ∈L̄ ∪L̄ . A superderivation D : L→L by D = D +D is the sum of a derivation
of degree  and a derivation of degree .

Definition . Let L be a Lie superalgebra with multiplication μ. The commutant of L
is the subset Lc of L given by

Lc =
{

a ∈L : μ(x, a) = μ(a, x), x ∈L
}

.

3 A fixed point result
Let (X, d) be a metric space. The celebrated Banach contraction theorem (Banach [],
) ensures us of a unique fixed point if a mapping T : X → X is a contraction, i.e., if
there exists a positive number q <  such that

d(Tx, Ty) ≤ qd(x, y)

for all x, y ∈ X. The Banach contraction theorem formulated for a complete metric space
is one of the most simple and, at the same time, the most important method for the ex-
istence and uniqueness of solution of nonlinear problems arising in mathematics and its
applications to engineering and natural sciences [–].

In , Baker [] used the Banach fixed point theorem to prove the Hyers-Ulam sta-
bility. The method was generalized by Radu [] and since then has been used by many
authors (see [–]). We prove a new theorem about this fundamental result as follows.

Let X be a nonempty set and d : X × X → [,∞] be a function satisfying the following
conditions:

() d(x, y) =  if and only if x = y;
() d(x, y) = d(y, x) (symmetry);
() d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality),

for all x, y, z ∈ X. Then (X, d) is called a generalized metric space.

Definition . (Ćirić [–]) Let T be a self-mapping of a generalized metric space
(X, d). If for any x ∈ X, every Cauchy sequence of the orbit

Ox(T) =
{

x, Tx, Tx, . . .
}

is convergent in X, then (X, d) is called a generalized T-orbitally complete metric space.
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Definition . (Ćirić [–]) Let T be a self-mapping of a metric space (X, d). We say
T is orbitally continuous if and only if limn→∞ Tnx = u ∈ X implies Tu = limn→∞ Tnx.

Theorem . (Fixed point theorem) Suppose that (X, d) is a generalized T-orbitally com-
plete metric space and T is an orbitally continuous self-mapping such that

d
(
Tx, Tx

) ≤ qd(x, Tx) ()

for any x ∈ X and fixed constant q with  < q < . Then the following alternative holds:
either

(a) for all n ≥ , d(Tnx, Tn+x) = ∞, or
(b) there exists a positive integer N such that d(Tnx, Tn+x) < ∞ for all n ≥ N .

In this case, the sequence (Tnx)n∈N is convergent to a fixed point x∗ of T . Moreover, if
d(x, Tx) < ∞, then

d
(
x, x∗) ≤ 

 – q
d(x, Tx). ()

Proof For any x ∈ X, consider the T-orbit {x, Tx, Tx, . . .}. Then either for all n ≥ ,
d(Tnx, Tn+x) = ∞, or there exists a positive integer N such that

d
(
Tnx, Tn+x

)
< ∞

for all n ≥ N . In order to show that (Tnx)n∈N is convergent in X, we need to show that
(Tnx)n∈N is Cauchy in X. Using the inequality (), for all n ≥ N we have

d
(
Tnx, Tn+x

) ≤ qd
(
Tn–x, Tnx

) ≤ · · · ≤ qn–N d
(
TN x, TN+x

)
.

Thus, for all n, m ∈N with n > m ≥ N , we get

d
(
Tmx, Tnx

) ≤ d
(
Tmx, Tm+x

)
+ · · · + d

(
Tn–x, Tnx

)

≤ qm–N d
(
TN x, TN+x

)
+ · · · + qn–N–d

(
TN x, TN+x

)

=
(
qm–N + · · · + qn–N–)d

(
TN x, TN+x

)
.

As m, n tend to infinity, we conclude that (Tnx)n∈N is Cauchy. Since X is T-orbitally com-
plete metric space, then (Tnx)n∈N converges to some x∗ ∈ X. We show that x∗ is a fixed
point of T . Indeed, by Definition . we have

T
(
x∗) = lim

n→∞ Tn+(x) = x∗.

It remains to show that the inequality () is sharp. Indeed, for all n ∈N and fixed constant
q with  < q < ,

d
(
x, Tnx

) ≤ d(x, Tx) + · · · + d
(
Tn–x, Tnx

) ≤ [
 + · · · + qn–]d(x, Tx).

Taking the limit as n → ∞, we obtain (). �
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As a result of Theorem ., we prove the Hyers-Ulam stability of the superhomomor-
phism and the superderivation in Lie superalgebras, using the above mentioned fixed point
alternative. For more details as regards the stability problems in Lie algebras, we refer the
reader to [, ].

4 The superhomomorphism in Lie superalgebras
Let ϕ : L → (,∞) and ψ : L → [,∞) be functions for which there exists  < q = q(�) <
 such that

ϕ
(
�x, �y

) ≤ �qϕ(x, y), ()

ψ
(
�x, y

) ≤ �qψ(x, y), ψ
(
x, �y

) ≤ �qψ(x, y) ()

for all x, y ∈L̄ ∪L̄ and � ∈ {–, }.

Theorem . Let L = L̄ ⊕L̄ be a Lie superalgebra with multiplication μ and norm ‖ ·‖L
and L′ = L′

̄ ⊕ L′
̄ be a complete Lie superalgebra with multiplication ν and norm ‖ · ‖L′ .

Suppose that fi : L→L′ (i ∈ Z) are functions satisfying

∥
∥fi(x + y) – fi(x) – fi(y)

∥
∥
L′ ≤ ϕ(x, y), ()

∥∥fi
(
μ(x, y)

)
– ν

(
fi(x), fi(y)

)∥∥
L′ ≤ ψ(x, y) ()

for all x, y ∈ L̄ ∪ L̄ , where ϕ : L → (,∞) and ψ : L → [,∞) are functions satisfy-
ing the contractive conditions () and (), for  < q = q(�) < . Then there exists a unique
superhomomorphism H� : L→L′ with H� = H�

̄ + H�

̄ such that

∥∥H�
i (x) – fi(x)

∥∥
L′ ≤ q –�



( – q)
ϕ(x, x) ()

for all x ∈L̄ ∪L̄ , � ∈ {–, }, and i ∈ Z.

Proof We define E := {g : L→L′ : g() = } and a generalized metric on E :

d(g, h) = sup
x∈L̄∪L̄

‖g(x) – h(x)‖L′

ϕ(x, x)
.

Consider the linear mapping T : E → E defined as

T�g(x) = –�g
(
�x

)

for all x ∈L̄ ∪L̄ and � ∈ {–, }. We can write, for any f ∈ E ,

‖T�f (x) – T
� f (x)‖L′

ϕ(x, x)
=

‖–�f (�x) – –�f (�x)‖L′

ϕ(x, x)

=
–�‖f (�x) – –�f (�x)‖L′

ϕ(x, x)

≤ q
‖f (�x) – –�f (�x)‖L′

ϕ(�x, �x)

≤ qd(f , T�f )
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for all x ∈L̄ ∪L̄ and � ∈ {–, }. So,

d
(
T�f , T

� f
) ≤ qd(f , T�f ).

This means that T is an orbitally continuous self-mapping of E satisfying (). Since L′ is
complete, then (E , d) is a generalized T-orbitally complete metric space.

Putting y = x and dividing both sides of () by , we get
∥∥∥
∥




fi(x) – fi(x)
∥∥∥
∥
L′

≤ ϕ(x, x)/ = qϕ(x, x)/

and then

∥∥Tfi(x) – fi(x)
∥∥
L′ ≤ qϕ(x, x)/ ()

for all x ∈L̄ ∪L̄ and i ∈ Z.
Replacing x and y in () by x

 , we get
∥∥
∥∥fi(x) – fi

(
x


)∥∥
∥∥
L′

≤ ϕ

(
x


,
x


)
≤ qϕ(x, x)/

and then

∥∥fi(x) – T–fi(x)
∥∥
L′ ≤ qϕ(x, x)/ ()

for all x ∈L̄ ∪L̄ and i ∈ Z.
It follows from () and () that, for � ∈ {–, } and i ∈ Z,

d(fi, T�fi) ≤ q
–�

 ϕ(x, x)/ < ∞.

Now, it follows from Theorem . that there exists a fixed point H�
i of T� in (E , d) such

that

H�
i (x) = lim

n→∞ Tn
� fi(x) = lim

n→∞ –n�fi
(
n�x

)

and

∥
∥H�

i (x) – fi(x)
∥
∥
L′ ≤ q –�



( – q)
ϕ(x, x)

for all x ∈L̄ ∪L̄ , � ∈ {–, }, and i ∈ Z.
Let x and y be any two points of L̄ ∪L̄ . It follows from () that

∥∥–n�fi
(
n�(x + y)

)
– –n�fi

(
n�x

)
– –n�fi

(
n�y

)∥∥
L′

≤ –n�ϕ
(
n�x, n�y

) ≤ qnϕ(x, y)

and n tending to infinity, we get

H�
i (x + y) = H�

i (x) + H�
i (y)

for � ∈ {–, } and i ∈ Z. We see that for � ∈ {–, } and i ∈ Z, H�
i is additive.
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Claim that for each � ∈ {–, } and i ∈ Z, the function H�
i satisfies (). It follows from

() that

∥∥H�
i
(
μ(x, y)

)
– ν

(
H�

i (x), H�
i (y)

)∥∥
L′

= lim
n→∞ –n�

∥∥fi
(
μ

(
n�x, n�y

))
– ν

(
fi
(
n�x

)
, fi

(
n�y

))∥∥
L′

≤ lim
n→∞ –n�ψ

(
n�x, n�y

)

≤ lim
n→∞ qnψ(x, y) = 

for all x, y ∈L̄ ∪L̄ , � ∈ {–, }, and i ∈ Z. So, we can conclude that

H�
i
(
μ(x, y)

)
= ν

(
H�

i (x), H�
i (y)

)

for all x, y ∈ L̄ ∪L̄ , � ∈ {–, }, and i ∈ Z. Now, it follows from Definition . that H� =
H�

̄ + H�

̄ is superhomomorphism and the proof is completed. �

Example . Let L = L̄ ⊕L̄ be a Lie superalgebra with multiplication μ and norm ‖ · ‖.
Consider the functions fi : L → L (i ∈ Z) defined by fi(x) = x + c, where  = c ∈ Lc, for all
x ∈L̄ ∪L̄ and i ∈ Z. Define the functions ϕ : L → (,∞) and ψ : L → [,∞) by

ϕ(x, y) = ψ(x, y) = ‖c‖e
‖x‖

for all x, y ∈L̄ ∪L̄ with x = . It is easy to see that ϕ and ψ satisfy the contractive condi-
tions () and () for q = q() = /. For x, y ∈L̄ ∪L̄ with x =  and i ∈ Z we have

∥∥fi(x + y) – fi(x) – fi(y)
∥∥ =

∥∥(x + y) + c – (x + c) – (y + c)
∥∥

= ‖c‖ ≤ ‖c‖e
‖x‖ = ϕ(x, y)

and

∥
∥fi

(
μ(x, y)

)
– μ

(
fi(x), fi(y)

)∥∥ =
∥
∥(

μ(x, y)
)

+ c – μ(x + c, y + c)
∥
∥

=
∥
∥(

μ(x, y)
)

+ c – μ(x, y) – μ(x, c) – μ(c, y) – μ(c, c)
∥
∥

= ‖c‖ ≤ ‖c‖e


‖x‖ = ψ(x, y).

Thus, by Theorem ., there exists a unique superhomomorphism H : L→L′ with H =
H

̄ + H
̄ , where H

̄ and H
̄ are defined as

H
(x) = lim

n→∞
f(nx)

n = lim
n→∞

nx + c
n = x,

H
 (x) = lim

n→∞
f(nx)

n = lim
n→∞

nx + c
n = x.

Moreover, () is sharp. Indeed,

∥
∥H

i (x) – fi(x)
∥
∥ = ‖x + c – x‖ = ‖c‖ ≤ (/)

( – /)
‖c‖e


‖x‖ = ‖c‖e


‖x‖

for all x ∈L̄ ∪L̄ with x =  and i ∈ Z.
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In the next theorem, we prove the hyperstability of the superhomomorphism.

Theorem . Let L = L̄ ⊕L̄ be a Lie superalgebra with multiplication μ and norm ‖ ·‖L
and L′ = L′

̄ ⊕ L′
̄ be a complete Lie superalgebra with multiplication ν and norm ‖ · ‖L′ .

Assume that fi : L→L′ (i ∈ Z) are functions such that fi(x) = fi(x) and

∥∥fi(x + y) – fi(x) – fi(y)
∥∥
L′ ≤ ϕ(x, y), ()

∥
∥fi

(
μ(x, y)

)
– ν

(
fi(x), fi(y)

)∥∥
L′ ≤ ψ(x, y) ()

for all x, y ∈ L̄ ∪ L̄ , where ϕ : L → (,∞) and ψ : L → [,∞) are functions satisfying
the contractive conditions () and (), for  < q = q(�) < . Then f = f̄ + f̄ is superhomo-
morphism.

Proof If we replace x and y in () with nx and ny, respectively, and divide by n the
resulting inequality, then we have

∥∥fi(x + y) – fi(x) – fi(y)
∥∥
L′ ≤ –nϕ

(
nx, ny

) ≤ qnϕ(x, y) ()

for all x, y ∈L̄ ∪L̄ , i ∈ Z, and n ∈N.
If we replace x and y in () with nx and ny, respectively, and divide by n the resulting

inequality, then we have

∥∥fi
(
μ(x, y)

)
– ν

(
fi(x), fi(y)

)∥∥
L′ ≤ –nψ

(
nx, ny

) ≤ qnψ(x, y) ()

for all x, y ∈ L̄ ∪L̄ , i ∈ Z and n ∈ N. From n → ∞ in () and (), we conclude that f̄

and f̄ are homomorphisms and hence f = f̄ + f̄ is superhomomorphism. �

5 The superderivation in Lie superalgebras
Theorem . Let L = L̄ ⊕L̄ be a complete Lie superalgebra with multiplication μ and
norm ‖ · ‖L. Let fi : L→L (i ∈ Z) be functions satisfying

∥
∥fi(x + y) – fi(x) – fi(y)

∥
∥
L ≤ ϕ(x, y), ()

∥∥fi
(
μ(x, y)

)
– μ

(
fi(x), y

)
– (–)i|x|μ

(
x, fi(y)

)∥∥
L ≤ ψ(x, y) ()

for all x, y ∈ L̄ ∪ L̄ , where ϕ : L → (,∞) and ψ : L → [,∞) are functions satisfy-
ing the contractive conditions () and (), for  < q = q(�) < . Then there exists a unique
superderivation D� : L→L with D� = D�

̄ + D�

̄ such that

∥
∥D�

i (x) – fi(x)
∥
∥
L ≤ q –�



( – q)
ϕ(x, x)

for all x ∈L̄ ∪L̄ , � ∈ {–, }, and i ∈ Z.

Proof Since the functions fi (i ∈ Z) satisfy (), according to the corresponding part of
Theorem ., we can conclude that there exists a unique additive function D� : L → L
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with D� = D�

̄ + D�

̄ and defined by

D�
i (x) = lim

n→∞ –n�fi
(
n�x

)

such that

∥∥D�
i (x) – fi(x)

∥∥
L ≤ q –�



( – q)
ϕ(x, x)

for all x ∈L̄ ∪L̄ , � ∈ {–, }, and i ∈ Z. We only need to show that D�

̄ and D�

̄ satisfy ().
It follows from () that

∥
∥D�

i
(
μ(x, y)

)
– μ

(
D�

i (x), y
)

– (–)i|x|μ
(
x, D�

i (y)
)∥∥

L

= lim
n→∞ –n�

∥∥fi
(
μ

(
n�x, n�y

))
– μ

(
fi
(
n�x

)
, n�y

)
– (–)i|x|μ

(
n�x, fi

(
n�y

))∥∥
L

≤ lim
n→∞ –n�ψ

(
n�x, n�y

)

≤ lim
n→∞ qnψ(x, y) = 

for all x, y ∈L̄ ∪L̄ , � ∈ {–, }, and i ∈ Z. It is easy to see that

D�
i
(
μ(x, y)

)
= μ

(
D�

i (x), y
)

+ (–)i|x|μ
(
x, D�

i (y)
)

for all x, y ∈L̄ ∪L̄ , � ∈ {–, }, and i ∈ Z. It follows from Definition . that D� = D�

̄ + D�

̄
is superderivation and the proof is completed. �

In the next theorem, we present the hyperstability result concerning the superderivation
in Lie superalgebras.

Theorem . Let L = L̄ ⊕L̄ be a complete Lie superalgebra with multiplication μ and
norm ‖ · ‖L. Let fi : L→L (i ∈ Z) be functions such that fi(x) = fi(x) and

∥∥fi(x + y) – fi(x) – fi(y)
∥∥
L ≤ ϕ(x, y), ()

∥
∥fi

(
μ(x, y)

)
– μ

(
fi(x), y

)
– (–)i|x|μ

(
x, fi(y)

)∥∥
L ≤ ψ(x, y) ()

for all x, y ∈ L̄ ∪ L̄ , where ϕ : L → (,∞) and ψ : L → [,∞) are functions satisfying
the contractive conditions () and (), for  < q = q(�) < . Then f = f̄ + f̄ is superderivation.

Proof Replacing x and y in () with nx and ny, respectively, and dividing by n the
resulting inequality, we get

∥∥fi(x + y) – fi(x) – fi(y)
∥∥
L ≤ –nϕ

(
nx, ny, 

) ≤ qnϕ(x, y) ()

for all x, y ∈L̄ ∪L̄ , i ∈ Z and n ∈N.
Replacing x and y in () with nx and ny, respectively, and dividing by n the resulting

inequality, we obtain

∥∥fi
(
μ(x, y)

)
– μ

(
fi(x), y

)
– (–)i|x|μ

(
x, fi(y)

)∥∥
L ≤ –nψ

(
nx, ny

) ≤ qnψ(x, y) ()
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for all x, y ∈L̄ ∪L̄ , i ∈ Z, and n ∈ N. From n → ∞ in () and (), we conclude that f̄

and f̄ are derivations and f = f̄ + f̄ is a superderivation. �

6 An application of Theorem 3.3
In , Rassias proved the following theorem concerning the stability of functional equa-
tions.

Theorem . (Rassias []) Consider E, E to be two Banach spaces, and let f : E → E

be a mapping such that f (tx) is continuous in t for each fixed x. Assume that there exist
θ ≥  and  ≤ p <  such that

‖f (x + y) – f (x) – f (y)‖E

‖x‖p
E

+ ‖y‖p
E

≤ θ for any x, y ∈ E. ()

Then there exists a unique linear mapping A : E → E such that

‖f (x) – A(x)‖E

‖x‖p
E

≤ θ

 – p for any x ∈ E.

In this section, we show that Theorem ., concerning the stability of the Cauchy func-
tional equation in Banach spaces, is a direct consequence of Theorem .. In general, al-
most all of the theorems concerning the stability problem of different functional equations
are consequences of Theorem ..

Proof Let us consider the set X := {g : E → E : g() = } and introduce a generalized
metric on X:

d(g, h) = sup
x =

‖g(x) – h(x)‖E

‖x‖p
E

.

Consider the linear mapping T : X → X defined as

Tg(x) = –g(x)

for all x ∈ E. We can write, for any f ∈ X,

‖Tf (x) – Tf (x)‖E

‖x‖p
E

=
‖–f (x) – –f (x)‖E

‖x‖p
E

= p– ‖f (x) – –f (x)‖E

‖x‖p
E

≤ p–d(f , Tf )

for all x ∈ E. So,

d
(
Tf , Tf

) ≤ p–d(f , Tf ) ( ≤ p < )

This means that T is an orbitally continuous self-mapping of X satisfying () with q = p–.
Since E is complete, then (X, d) is a generalized T-orbitally complete metric space.
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By equation (), one can easily show that

‖f (x) – f (x)/‖
‖x‖p ≤ θ < ∞.

Now, it follows from Theorem . that there exists a unique fixed point A of T in (X, d)
such that

A(x) = lim
n→∞ Tnf (x) = lim

n→∞ –nf
(
nx

)

and

‖f (x) – A(x)‖E

‖x‖p
E

≤ 
 – p– d(f , Tf ) =


 – p– θ

for all x ∈ E. It is clear that A is linear and the proof is completed. �
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