15,328 research outputs found
Solving Dirac equations on a 3D lattice with inverse Hamiltonian and spectral methods
A new method to solve the Dirac equation on a 3D lattice is proposed, in
which the variational collapse problem is avoided by the inverse Hamiltonian
method and the fermion doubling problem is avoided by performing spatial
derivatives in momentum space with the help of the discrete Fourier transform,
i.e., the spectral method. This method is demonstrated in solving the Dirac
equation for a given spherical potential in 3D lattice space. In comparison
with the results obtained by the shooting method, the differences in single
particle energy are smaller than ~MeV, and the densities are almost
identical, which demonstrates the high accuracy of the present method. The
results obtained by applying this method without any modification to solve the
Dirac equations for an axial deformed, non-axial deformed, and octupole
deformed potential are provided and discussed.Comment: 18 pages, 6 figure
Surface phase separation in nanosized charge-ordered manganites
Recent experiments showed that the robust charge-ordering in manganites can
be weakened by reducing the grain size down to nanoscale. Weak ferromagnetism
was evidenced in both nanoparticles and nanowires of charge-ordered manganites.
To explain these observations, a phenomenological model based on surface phase
separation is proposed. The relaxation of superexchange interaction on the
surface layer allows formation of a ferromagnetic shell, whose thickness
increases with decreasing grain size. Possible exchange bias and softening of
the ferromagnetic transition in nanosized charge-ordered manganites are
predicted.Comment: 4 pages, 3 figure
China's grave demographic challenges in coming decades
This paper systematically analyzes the uncertainties of major demographic indicators from China's 2000 census, such as fertility, gender ratio at birth, and age structure, and through a probability demographic forecast gives an assessment of the situation facing the country. Research outcomes suggest that great differences exist in the estimate of China's fertility, gender ratio at birth and low-age child population. These differences directly affect China's current and future demographic uncertainties, and have implications for policy and future research. The demographic uncertainties caused by current conditions are of great value to decision-makers and the public alike
Sintering-Induced Phase Transformation of Nanoparticles: A Molecular Dynamics Study
Sintering-induced phase transformation of TiO2 nanoparticles is investigated systematically via molecular dynamics simulation. Upon defining a coordination number and bond angle distribution criteria, local phase information is identified for each individual Ti atom originating from amorphous or crystal structure as well as three TiO2 polymorphs, anatase, brookite, and rutile. Size-dependent structures of nanoparticles lead to different dynamics of the sintering-induced phase transformation. Grain boundaries that form between nanoparticles during sintering trigger the nucleation and growth of new phases. During the sintering of two equal-sized core–shell anatase nanoparticles, crystal core regions melt with the temperature increase and the surface energy decrease in the microcanonical (NVE) ensemble. The new phase that develops from the grain boundary spreads into the destroyed core regions in stages, forming a new larger spherical nanoparticle with an ordered atomic arrangement. During the sintering of two unequal-sized nanoparticles (amorphous and core–shell anatase), atoms from the amorphous nanoparticle first nucleate to form crystal anatase in the contact region, and a grain boundary is then developed between the original core region and the newly formed anatase crystal. After that, phase transformation follows much the same route as the equal-sized case from anatase to brookite
Real Scalar Field Scattering with Polynomial Approximation around Schwarzschild-de Sitter Black-hole
As one of the fitting methods, the polynomial approximation is effective to
process sophisticated problem. In this paper, we employ this approach to handle
the scattering of scalar field around the Schwarzschild-de Sitter black-hole.
The complex relationship between tortoise coordinate and radial coordinate is
replaced by the approximate polynomial. The Schrdinger-like equation,
the real boundary conditions and the polynomial approximation construct a full
Sturm-Liouville type problem. Then this boundary value problem can be solved
numerically according to two limiting cases: the first one is the Nariai
black-hole whose horizons are close to each other, the second one is when the
horizons are widely separated. Compared with previous results (Brevik and
Tian), the field near the event horizon and cosmological horizon can have a
better description.Comment: revtex4 source file, 11 pages, 8 figure
- …