7,735 research outputs found

    Quantization and Corrections of Adiabatic Particle Transport in a Periodic Ratchet Potential

    Full text link
    We study the transport of an overdamped particle adiabatically driven by an asymmetric potential which is periodic in both space and time. We develop an adiabatic perturbation theory after transforming the Fokker-Planck equation into a time-dependent hermitian problem, and reveal an analogy with quantum adiabatic particle transport. An analytical expression is obtained for the ensemble average of the particle velocity in terms of the Berry phase of the Bloch states. Its time average is shown to be quantized as a Chern number in the deterministic or tight-binding limit, with exponentially small corrections. In the opposite limit, where the thermal energy dominates the ratchet potential, a formula for the average velocity is also obtained, showing a second order dependence on the potential.Comment: 8 page

    Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field

    Full text link
    The temperature-dependent electron spin relaxation of positively charged excitons in a single InAs quantum dot (QD) was measured by time-resolved photoluminescence spectroscopy at zero applied magnetic fields. The experimental results show that the electron-spin relaxation is clearly divided into two different temperature regimes: (i) T < 50 K, spin relaxation depends on the dynamical nuclear spin polarization (DNSP) and is approximately temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K, spin relaxation speeds up with increasing temperature. A model of two LO phonon scattering process coupled with hyperfine interaction is proposed to account for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure

    δ\delta meson effects on neutron stars in the modified quark-meson coupling model

    Full text link
    The properties of neutron stars are investigated by including δ\delta meson field in the Lagrangian density of modified quark-meson coupling model. The Σ\Sigma^- population with δ\delta meson is larger than that without δ\delta meson at the beginning, but it becomes smaller than that without δ\delta meson as the appearance of Ξ\Xi^-. The δ\delta meson has opposite effects on hadronic matter with or without hyperons: it softens the EOSes of hadronic matter with hyperons, while it stiffens the EOSes of pure nucleonic matter. Furthermore, the leptons and the hyperons have the similar influence on δ\delta meson effects. The δ\delta meson increases the maximum masses of neutron stars. The influence of (σ,ϕ)(\sigma^*,\phi) on the δ\delta meson effects are also investigated.Comment: 10 pages, 6 figures, 4 table

    Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder

    Full text link
    The failure probabilities or the strength distributions of heterogeneous 1D systems with continuous local strength distribution and local load sharing have been studied using a simple, exact, recursive method. The fracture behavior depends on the local bond-strength distribution, the system size, and the applied stress, and crossovers occur as system size or stress changes. In the brittle region, systems with continuous disorders have a failure probability of the modified-Gumbel form, similar to that for systems with percolation disorder. The modified-Gumbel form is of special significance in weak-stress situations. This new recursive method has also been generalized to calculate exactly the failure probabilities under various boundary conditions, thereby illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure

    The corrosion behavior of a sputtered micrograin film on Fe-5Cr-5Si alloy in H2-CO2-H2S mixture at 700 °C

    Get PDF
    Financial support from the NSFC (Projects NO. 59071129 & 51501135) is acknowledged.The corrosion behaviors of as-cast Fe-5Cr-5Si alloy with and without sputtered Fe-5Cr-5Si film in H2-CO2-H2S mixture at 700 °C are studied. The corrosion scale forming on the as-cast alloy is non-protective and mainly composed of FeS outer layer and FeS + FeCr2O4 + Fe2SiO4 inner layer. However, a continuous Cr2O3 + SiO2 layer which possesses favorable protectiveness forms at the coating/alloy interface for the coated alloy, even though FeS layer and FeS + FeCr2O4 + Fe2SiO4 mixed layer also form. The formation mechanism of the Cr2O3 + SiO2 layer on the coated alloy is discussed thoroughly.PostprintPeer reviewe
    corecore