8,064 research outputs found
Quantization and Corrections of Adiabatic Particle Transport in a Periodic Ratchet Potential
We study the transport of an overdamped particle adiabatically driven by an
asymmetric potential which is periodic in both space and time. We develop an
adiabatic perturbation theory after transforming the Fokker-Planck equation
into a time-dependent hermitian problem, and reveal an analogy with quantum
adiabatic particle transport. An analytical expression is obtained for the
ensemble average of the particle velocity in terms of the Berry phase of the
Bloch states. Its time average is shown to be quantized as a Chern number in
the deterministic or tight-binding limit, with exponentially small corrections.
In the opposite limit, where the thermal energy dominates the ratchet
potential, a formula for the average velocity is also obtained, showing a
second order dependence on the potential.Comment: 8 page
Temperature dependence of electron-spin relaxation in a single InAs quantum dot at zero applied magnetic field
The temperature-dependent electron spin relaxation of positively charged
excitons in a single InAs quantum dot (QD) was measured by time-resolved
photoluminescence spectroscopy at zero applied magnetic fields. The
experimental results show that the electron-spin relaxation is clearly divided
into two different temperature regimes: (i) T < 50 K, spin relaxation depends
on the dynamical nuclear spin polarization (DNSP) and is approximately
temperature-independent, as predicted by Merkulov et al. (ii) T > about 50 K,
spin relaxation speeds up with increasing temperature. A model of two LO phonon
scattering process coupled with hyperfine interaction is proposed to account
for the accelerated electron spin relaxation at higher temperatures.Comment: 10 pages, 4 figure
meson effects on neutron stars in the modified quark-meson coupling model
The properties of neutron stars are investigated by including meson
field in the Lagrangian density of modified quark-meson coupling model. The
population with meson is larger than that without
meson at the beginning, but it becomes smaller than that without meson
as the appearance of . The meson has opposite effects on
hadronic matter with or without hyperons: it softens the EOSes of hadronic
matter with hyperons, while it stiffens the EOSes of pure nucleonic matter.
Furthermore, the leptons and the hyperons have the similar influence on
meson effects. The meson increases the maximum masses of
neutron stars. The influence of on the meson effects
are also investigated.Comment: 10 pages, 6 figures, 4 table
Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder
The failure probabilities or the strength distributions of heterogeneous 1D
systems with continuous local strength distribution and local load sharing have
been studied using a simple, exact, recursive method. The fracture behavior
depends on the local bond-strength distribution, the system size, and the
applied stress, and crossovers occur as system size or stress changes. In the
brittle region, systems with continuous disorders have a failure probability of
the modified-Gumbel form, similar to that for systems with percolation
disorder. The modified-Gumbel form is of special significance in weak-stress
situations. This new recursive method has also been generalized to calculate
exactly the failure probabilities under various boundary conditions, thereby
illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure
The corrosion behavior of a sputtered micrograin film on Fe-5Cr-5Si alloy in H2-CO2-H2S mixture at 700 °C
Financial support from the NSFC (Projects NO. 59071129 & 51501135) is acknowledged.The corrosion behaviors of as-cast Fe-5Cr-5Si alloy with and without sputtered Fe-5Cr-5Si film in H2-CO2-H2S mixture at 700 °C are studied. The corrosion scale forming on the as-cast alloy is non-protective and mainly composed of FeS outer layer and FeS + FeCr2O4 + Fe2SiO4 inner layer. However, a continuous Cr2O3 + SiO2 layer which possesses favorable protectiveness forms at the coating/alloy interface for the coated alloy, even though FeS layer and FeS + FeCr2O4 + Fe2SiO4 mixed layer also form. The formation mechanism of the Cr2O3 + SiO2 layer on the coated alloy is discussed thoroughly.PostprintPeer reviewe
- …