123,507 research outputs found

    Cue validity and object-based attention

    Get PDF
    In a previous study, Egly, Driver, and Rafal (1994) observed both space- and object-based components of visual selective attention. However, the mechanisms underlying these two components and the relationship between them are not well understood. In the present research, with a similar paradigm, these issues were addressed by manipulating cue validity. Behavioral results indicated the presence of both space- and object-based components under high cue validity, similar to the results of Egly et al.'s study. In addition, under low cue validity, the space-based component was absent, whereas the object-based component was maintained. Further event-related potential results demonstrated an object-based effect at a sensory level over the posterior areas of brain, and a space-based effect over the anterior region. The present data suggest that the space- and object-based components reflect mainly voluntary and reflexive mechanisms, respectively

    Coherent spin mixing dynamics in a spin-1 atomic condensate

    Full text link
    We study the coherent off-equilibrium spin mixing inside an atomic condensate. Using mean field theory and adopting the single spatial mode approximation (SMA), the condensate spin dynamics is found to be well described by that of a nonrigid pendulum, and displays a variety of periodic oscillations in an external magnetic field. Our results illuminate several recent experimental observations and provide critical insights into the observation of coherent interaction-driven oscillations in a spin-1 condensate.Comment: 6 pages, 5 eps figures, update the discussion of the experimental result

    The interaction of polymer dispersed liquid crystal sensors with ultrasound

    Get PDF
    Polymer dispersed liquid crystals (PDLCs) have been shown to be sensitive to ultrasound through the acousto-optic effect. The acousto-optic response of PDLCs was studied over a broad frequency range (0.3–10 MHz). We demonstrate that the displacements required to produce acousto-optic clearing of PDLC films can be as low as a few nanometers, which is at least 103 times smaller than the PDLC droplet size, is 105 times smaller than the PDLC layer thickness, and of the order of the molecular size of the liquid crystal constituents. This suggests that the acousto-optic effect in PDLCs is due to the microscopic effects of the LC reorientation under torques or flows rather than the LC reorientation through macroscopic droplet deformation. The displacement required for clearing is related to the frequency of operation via an exponential decay. We attribute the observed frequency response to a freezing out of the rotational motion around the short axis of the liquid crystal. The reported frequency dependence and displacements required indicate that the effects and materials described here could be used for ultrasound visualization in a non-destructive testing context
    • …
    corecore