1,076 research outputs found

    Extraction of the Spin Glass Correlation Length

    Full text link
    The peak of the spin glass relaxation rate, S(t)=d{-M_{TRM}(t,t_w)}/H/{d ln t}, is directly related to the typical value of the free energy barrier which can be explored over experimental time scales. A change in magnetic field H generates an energy E_z={N_s}{X_fc}{H^2} by which the barrier heights are reduced, where X_{fc} is the field cooled susceptibility per spin, and N_s is the number of correlated spins. The shift of the peak of S(t) gives E_z, generating the correlation length, Ksi(t,T), for Cu:Mn 6at.% and CdCr_{1.7}In_{0.3}S_4. Fits to power law dynamics, Ksi(t,T)\propto {t}^{\alpha(T)} and activated dynamics Ksi(t,T) \propto {ln t}^{1/psi} compare well with simulation fits, but possess too small a prefactor for activated dynamics.Comment: 4 pages, 4 figures. Department of Physics, University of California, Riverside, California, and Service de Physique de l'Etat Condense, CEA Saclay, Gif sur Yvette, France. To appear in Phys. Rev. Lett. January 4, 199

    Double polarization hysteresis loop induced by the domain pinning by defect dipoles in HoMnO3 epitaxial thin films

    Full text link
    We report on antiferroelectriclike double polarization hysteresis loops in multiferroic HoMnO3 thin films below the ferroelectric Curie temperature. This intriguing phenomenon is attributed to the domain pinning by defect dipoles which were introduced unintentionally during film growth process. Electron paramagnetic resonance suggests the existence of Fe1+ defects in thin films and first principles calculations reveal that the defect dipoles would be composed of oxygen vacancy and Fe1+ defect. We discuss migration of charged point defects during film growth process and formation of defect dipoles along ferroelectric polarization direction, based on the site preference of point defects. Due to a high-temperature low-symmetry structure of HoMnO3, aging is not required to form the defect dipoles in contrast to other ferroelectrics (e.g., BaTiO3).Comment: 4 figure

    Aging, rejuvenation, and memory effects in short-range Ising spin glass: Cu0.5_{0.5}Co0.5_{0.5}Cl2_{2}-FeCl3_{3} graphite bi-intercalation compound

    Full text link
    Non-equilibrium aging dynamics in 3D Ising spin glass Cu0.5_{0.5}Co0.5_{0.5}Cl2_{2}-FeCl3_{3} GBIC has been studied by zero-field cooled (ZFC) magnetization and low frequency AC magnetic susceptibility (f=0.05f = 0.05 Hz), where Tg=3.92±0.11T_{g} = 3.92 \pm 0.11 K. The time dependence of the relaxation rate S(t)=(1/H)S(t) = (1/H)dMZFC/M_{ZFC}/dlnt\ln t for the ZFC magnetization after the ZFC aging protocol, shows a peak at a characteristic time tcrt_{cr} near a wait time twt_{w} (aging behavior), corresponding to a crossover from quasi equilibrium dynamics to non-equilibrium. The time tcrt_{cr} strongly depends on twt_{w}, temperature (TT), magnetic field (HH), and the temperature shift (ΔT\Delta T). The rejuvenation effect is observed in both χ\chi^{\prime} and χ\chi^{\prime\prime} under the TT-shift and HH-shift procedures. The memory of the specific spin configurations imprinted during the ZFC aging protocol can be recalled when the system is re-heated at a constant heating rate. The aging, rejuvenation, and memory effects observed in the present system are discussed in terms of the scaling concepts derived from numerical studies on 3D Edwards-Anderson spin glass model.Comment: 14 pages, 14 figures; Eur. Phys. J. B accepted for publicatio

    Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function

    Full text link
    Using Monte Carlo simulations, we have studied isothermal aging of three-dimensional Ising spin-glass model focusing on quasi-equilibrium behavior of the spin auto-correlation function. Weak violation of the time translational invariance in the quasi-equilibrium regime is analyzed in terms of {\it effective stiffness} for droplet excitations in the presence of domain walls. Within the range of computational time window, we have confirmed that the effective stiffness follows the expected scaling behavior with respect to the characteristic length scales associated with droplet excitations and domain walls, whose growth law has been extracted from our simulated data. Implication of the results are discussed in relation to experimental works on ac susceptibilities.Comment: 18 pages, 6 figure

    Field-Shift Aging Protocol on the 3D Ising Spin-Glass Model: Dynamical Crossover between the Spin-Glass and Paramagnetic States

    Full text link
    Spin-glass (SG) states of the 3-dimensional Ising Edwards-Anderson model under a static magnetic field hh are examined by means of the standard Monte Carlo simulation on the field-shift aging protocol at temperature TT. For each process with (T; \tw, h), \tw being the waiting time before the field is switched on, we extract the dynamical crossover time, \tcr(T; \tw, h). We have found a nice scaling relation between the two characteristic length scales which are properly determined from \tcr and \tw and then are normalized by the static field crossover length introduced in the SG droplet theory. This scaling behavior implies the instability of the SG phase in the equilibrium limit even under an infinitesimal hh. In comparison with this numerical result the field effect on real spin glasses is also discussed.Comment: 4 pages, 5 figures, jpsj2, Changed conten

    Evidences Against Temperature Chaos in Mean Field and Realistic Spin Glasses

    Full text link
    We discuss temperature chaos in mean field and realistic 3D spin glasses. Our numerical simulations show no trace of a temperature chaotic behavior for the system sizes considered. We discuss the experimental and theoretical implications of these findings.Comment: 4 pages in aps format. 6 .ps figures. It is better to print the paper in colou

    Real spin glasses relax slowly in the shade of hierarchical trees

    Get PDF
    The Parisi solution of the mean-field spin glass has been widely accepted and celebrated. Its marginal stability in 3d and its complexity however raised the question of its relevance to real spin glasses. This paper gives a short overview of the important experimental results which could be understood within the mean-field solution. The existence of a true phase transition and the particular behaviour of the susceptibility below the freezing temperature, predicted by the theory, are clearly confirmed by the experimental results. The behaviour of the complex order parameter and of the Fluctuation Dissipation ratio are in good agreement with results of spontaneous noise measurements. The very particular ultrametric symmetry, the key feature of the theory, provided us with a simple description of the rejuvenation and memory effects observed in experiment. Finally, going a step beyond mean-field, the paper shortly discusses new analyses in terms of correlated domains characterized by their length scales, as well as new experiments on superspin glasses which compare well with recent theoretical simulations.Comment: To appear in the proceedings of "Wandering with Curiosity in Complex Landscapes", a scientific conference in honour of Giorgio Parisi for his 60th birthday, Roma, September 8-10 2008 (submitted for the special issue of the Journal of Statistical Physics, 2009

    Aging, rejuvenation and memory phenomena in spin glasses

    Full text link
    In this paper, we review several important features of the out-of-equilibrium dynamics of spin glasses. Starting with the simplest experiments, we discuss the scaling laws used to describe the isothermal aging observed in spin glasses after a quench down to the low temperature phase. We report in particular new results on the sub-aging behaviour of spin glasses. We then discuss the rejuvenation and memory effects observed when a spin glass is submitted to temperature variations during aging, from the point of view of both energy landscape pictures and of real space pictures. We highlight the fact that both approaches point out the necessity of hierarchical processes involved in aging. Finally, we report an investigation of the effect of small temperature variations on aging in spin glass samples with various anisotropies which indicates that this hierarchy depends on the spin anisotropy.Comment: submitted for the Proceedings of Stat Phys 22, Bangalore (India

    Growth of a dynamical correlation length in an aging superspin glass

    Get PDF
    We report on zero field cooled magnetization relaxation experiments on a concen- trated frozen ferrofluid exhibiting a low temperature superspin glass transition. With a method initially developed for spin glasses, we investigate the field dependence of the relaxations that take place after different aging times. We extract the typical number of correlated spins involved in the aging dynamics. This brings important insights into the dynamical correlation length and its time growth. Our results, consistent with expressions obtained for spin glasses, extend the generality of these behaviours to the class of superspin glasses. Since the typical flipping time is much larger for superspins than for atomic spins, our experiments probe a time regime much closer to that of numerical simulations

    Aging, rejuvenation and memory effects in Ising and Heisenberg spin glasses

    Full text link
    We have compared aging phenomena in the Fe_{0.5}Mn_{0.5}TiO_3 Ising spin glass and in the CdCr_{1.7}In_{0.3}S_4 Heisenberg-like spin glass by means of low-frequency ac susceptibility measurements. At constant temperature, aging obeys the same `ωt\omega t scaling' in both samples as in other systems. Investigating the effect of temperature variations, we find that the Ising sample exhibits rejuvenation and memory effects which are qualitatively similar to those found in other spin glasses, indicating that the existence of these phenomena does not depend on the dimensionality of the spins. However, systematic temperature cycling experiments on both samples show important quantitative differences. In the Ising sample, the contribution of aging at low temperature to aging at a slightly higher temperature is much larger than expected from thermal slowing down. This is at variance with the behaviour observed until now in other spin glasses, which show the opposite trend of a free-energy barrier growth as the temperature is decreased. We discuss these results in terms of a strongly renormalized microscopic attempt time for thermal activation, and estimate the corresponding values of the barrier exponent ψ\psi introduced in the scaling theories.Comment: 8 pages, including 6 figure
    corecore