835 research outputs found

    Geodesic motions in extraordinary string geometry

    Full text link
    The geodesic properties of the extraordinary vacuum string solution in (4+1) dimensions are analyzed by using Hamilton-Jacobi method. The geodesic motions show distinct properties from those of the static one. Especially, any freely falling particle can not arrive at the horizon or singularity. There exist stable null circular orbits and bouncing timelike and null geodesics. To get into the horizon {or singularity}, a particle need to follow a non-geodesic trajectory. We also analyze the orbit precession to show that the precession angle has distinct features for each geometry such as naked singularity, black string, and wormhole.Comment: 15 pages, 11 figure

    Counteracting Selfish Nodes Using Reputation Based System in Mobile Ad Hoc Networks

    Get PDF
    A mobile ad hoc network (MANET) is a group of nodes constituting a network of mobile nodes without predefined and pre-established architecture where mobile nodes can communicate without any dedicated access points or base stations. In MANETs, a node may act as a host as well as a router. Nodes in the network can send and receive packets through intermediate nodes. However, the existence of malicious and selfish nodes in MANETs severely degrades network performance. The identification of such nodes in the network and their isolation from the network is a challenging problem. Therefore, in this paper, a simple reputation-based scheme is proposed which uses the consumption and contribution information for selfish node detection and cooperation enforcement. Nodes failing to cooperate are detached from the network to save resources of other nodes with good reputation. The simulation results show that our proposed scheme outperforms the benchmark scheme in terms of NRL (normalized routing load), PDF (packet delivery fraction), and packet drop in the presence of malicious and selfish attacks. Furthermore, our scheme identifies the selfish nodes quickly and accurately as compared to the benchmark scheme

    Production and optical properties of liquid scintillator for the JSNS2^{2} experiment

    Full text link
    The JSNS2^{2} (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) experiment will search for neutrino oscillations over a 24 m short baseline at J-PARC. The JSNS2^{2} inner detector will be filled with 17 tons of gadolinium-loaded liquid scintillator (LS) with an additional 31 tons of unloaded LS in the intermediate Ī³\gamma-catcher and outer veto volumes. JSNS2^{2} has chosen Linear Alkyl Benzene (LAB) as an organic solvent because of its chemical properties. The unloaded LS was produced at a refurbished facility, originally used for scintillator production by the RENO experiment. JSNS2^{2} plans to use ISO tanks for the storage and transportation of the LS. In this paper, we describe the LS production, and present measurements of its optical properties and long term stability. Our measurements show that storing the LS in ISO tanks does not result in degradation of its optical properties.Comment: 7 pages, 4 figures

    Particle Probe of Horava-Lifshitz Gravity

    Full text link
    Kehagias-Sfetsos black hole in Ho\v{r}ava-Lifshitz gravity is probed through particle geodesics. Gravitational force of KS black hole becomes weaker than that of Schwarzschild around horizon and interior space. Particles can be always scattered or trapped in new closed orbits, unlike those falling forever in Schwarzschild black. The properties of null and timelike geodesics are classified with values of coupling constants. The precession rates of the orbits are evaluated. The time trajectories are also classified under different values of coupling constants for both null and timelike geodesics. Physical phenomena that may be observable are discussed.Comment: 10 pages, 8 figure

    The Baryonic Phase in Holographic Descriptions of the QCD Phase Diagram

    Full text link
    We study holographic models of the QCD temperature-chemical potential phase diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic phase may be included through linked D5-D7 systems. In a previous analysis of a model with a running gauge coupling a baryonic phase was shown to exist to arbitrarily large chemical potential. Here we explore this phase in a more generic phenomenological setting with a step function dilaton profile. The change in dilaton generates a linear confining qĖ‰q\bar{q}q potential and opposes the screening effect of temperature. We show that the persistence of the baryonic phase depends on the step size and that QCD-like phase diagrams can be described. The baryonic phase's existence is qualitatively linked to the existence of confinement in Wilson loop computations in the background.Comment: 21 pages, 7 figure

    Wall-thickness-dependent strength of nanotubular ZnO

    Get PDF
    We fabricate nanotubular ZnO with wall thickness of 45, 92, 123 nm using nanoporous gold (np-Au) with ligament diameter at necks of 1.43 mu m as sacrificial template. Through micro-tensile and micro-compressive testing of nanotubular ZnO structures, we find that the exponent m in (sigma) over bar proportional to (rho) over bar (m), where (sigma) over bar is the relative strength and (rho) over bar is the relative density, for tension is 1.09 and for compression is 0.63. Both exponents are lower than the value of 1.5 in the Gibson-Ashby model that describes the relation between relative strength and relative density where the strength of constituent material is independent of external size, which indicates that strength of constituent ZnO increases as wall thickness decreases. We find, based on hole-nanoindentation and glazing incidence X-ray diffraction, that this wall-thickness-dependent strength of nanotubular ZnO is not caused by strengthening of constituent ZnO by size reduction at the nanoscale. Finite element analysis suggests that the wall-thickness-dependent strength of nanotubular ZnO originates from nanotubular structures formed on ligaments of np-Au

    Semiclassical strings in AdS(3) X S^2

    Full text link
    In this paper, we investigate the semiclassical strings in AdS(3)XS^2, in which the string configuration of AdS(3) is classified to three cases depending on the parameters. Each of these has a different anomalous dimension proportional to logS, S^(1/3) and S, where S is a angular momentum on AdS(3). Further we generalize the dispersion relations for various string configuration on AdS(3)XS^2.Comment: 15 pages, added reference
    • ā€¦
    corecore