34,672 research outputs found
Electronic Structures of Antiperovskite Superconductor MgCNi and Related Compounds
Electronic structure of a newly discovered antiperovskite superconductor
MgCNi is investigated by using the LMTO band method. The main contribution
to the density of states (DOS) at the Fermi energy comes from Ni
3 states which are hybridized with C 2 states. The DOS at is
varied substantially by the hole or electron doping due to the very high and
narrow DOS peak located just below . We have also explored
electronic structures of C-site and Mg-site doped MgCNi systems, and
described the superconductivity in terms of the conventional phonon mechanism.Comment: 3 pages, presented at ORBITAL2001 September 11-14, 2001 (Sendai,
JAPAN
Electronic structures of antiperovskite superconductors: MgXNi (X=B,C,N)
We have investigated electronic structures of a newly discovered
antiperovskite superconductor MgCNi and related compounds MgBNi and
MgNNi. In MgCNi, a peak of very narrow and high density of states is
located just below , which corresponds to the antibonding
state of Ni-3d and C- but with the predominant Ni-3d character. The
prominent nesting feature is observed in the -centered electron Fermi
surface of an octahedron-cage-like shape that originates from the 19th band.
The estimated superconducting parameters based on the simple rigid-ion
approximation are in reasonable agreement with experiment, suggesting that the
superconductivity in MgCNi is described well by the conventional phonon
mechanism.Comment: 5 pages, 5 figure
Infrared spectroscopy under multi-extreme conditions: Direct observation of pseudo gap formation and collapse in CeSb
Infrared reflectivity measurements of CeSb under multi-extreme conditions
(low temperatures, high pressures and high magnetic fields) were performed. A
pseudo gap structure, which originates from the magnetic band folding effect,
responsible for the large enhancement in the electrical resistivity in the
single-layered antiferromagnetic structure (AF-1 phase) was found at a pressure
of 4 GPa and at temperatures of 35 - 50 K. The optical spectrum of the pseudo
gap changes to that of a metallic structure with increasing magnetic field
strength and increasing temperature. This change is the result of the magnetic
phase transition from the AF-1 phase to other phases as a function of the
magnetic field strength and temperature. This result is the first optical
observation of the formation and collapse of a pseudo gap under multi-extreme
conditions.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev.
Origins of choice-related activity in mouse somatosensory cortex.
During perceptual decisions about faint or ambiguous sensory stimuli, even identical stimuli can produce different choices. Spike trains from sensory cortex neurons can predict trial-to-trial variability in choice. Choice-related spiking is widely studied as a way to link cortical activity to perception, but its origins remain unclear. Using imaging and electrophysiology, we found that mouse primary somatosensory cortex neurons showed robust choice-related activity during a tactile detection task. Spike trains from primary mechanoreceptive neurons did not predict choices about identical stimuli. Spike trains from thalamic relay neurons showed highly transient, weak choice-related activity. Intracellular recordings in cortex revealed a prolonged choice-related depolarization in most neurons that was not accounted for by feed-forward thalamic input. Top-down axons projecting from secondary to primary somatosensory cortex signaled choice. An intracellular measure of stimulus sensitivity determined which neurons converted choice-related depolarization into spiking. Our results reveal how choice-related spiking emerges across neural circuits and within single neurons
Anomalous Superconducting-Gap Structure of Slightly Overdoped Ba(FeCo)As
We observed the anisotropic superconducting-gap (SC-gap) structure of a
slightly overdoped superconductor, Ba(FeCo)As
(), using three-dimensional (3D) angle-resolved photoemission
spectroscopy. Two hole Fermi surfaces (FSs) observed at the Brillouin zone
center and an inner electron FS at the zone corner showed a nearly isotropic SC
gap in 3D momentum space. However, the outer electron FS showed an anisotropic
SC gap with nodes or gap minima around the M and A points. The different
anisotropies obtained the SC gap between the outer and inner electron FSs
cannot be expected from all theoretical predictions with spin fluctuation,
orbital fluctuation, and both competition. Our results provide a new insight
into the SC mechanisms of iron pnictide superconductors.Comment: 11 pages, 4 figure
- …
