13,250 research outputs found

    The Ecosystem Approach to Fisheries: Issues, Terminology, Principles, Institutional Foundations, Implementation and Outlook

    Get PDF
    Ecosystems are complex and dynamic natural units that produce goods and services beyond those of benefit to fisheries. Because fisheries have a direct impact on the ecosystem, which is also impacted by other human activities, they need to be managed in an ecosystem context. The meaning of the terms 'ecosystem management', 'ecosystem based management', 'ecosystem approach to fisheries'(EAF), etc., are still not universally defined and progressively evolving. The justification of EAF is evident in the characteristics of an exploited ecosystem and the impacts resulting from fisheries and other activities. The rich set of international agreements of relevance to EAF contains a large number of principles and conceptual objectives. Both provide a fundamental guidance and a significant challenge for the implementation of EAF. The available international instruments also provide the institutional foundations for EAF. The FAO Code of Conduct for Responsible Fisheries is particularly important in this respect and contains provisions for practically all aspects of the approach. One major difficulty in defining EAF lies precisely in turning the available concepts and principles into operational objectives from which an EAF management plan would more easily be developed. The paper discusses these together with the types of action needed to achieve them. Experience in EAF implementation is still limited but some issues are already apparent, e.g. in added complexity, insufficient capacity, slow implementation, need for a pragmatic approach, etc. It is argued, in conclusion, that the future of EAF and fisheries depends on the way in which the two fundamental concepts of fisheries management and ecosystem management, and their respective stakeholders, will join efforts or collide

    Concentration for Trotter error

    Full text link
    Quantum simulation is expected to be one of the key applications of future quantum computers. Product formulas, or Trotterization, are the oldest and, still today, an appealing method for quantum simulation. For an accurate product formula approximation in the spectral norm, the state-of-the-art gate complexity depends on the number of Hamiltonian terms and a certain 1-norm of its local terms. This work studies the concentration aspects of Trotter error: we prove that, typically, the Trotter error exhibits 2-norm (i.e., incoherent) scaling; the current estimate with 1-norm (i.e., coherent) scaling is for the worst cases. For k-local Hamiltonians and higher-order product formulas, we obtain gate count estimates for input states drawn from a 1-design ensemble (e.g., computational basis states). Our gate count depends on the number of Hamiltonian terms but replaces the 1-norm quantity by its analog in 2-norm, giving significant speedup for systems with large connectivity. Our results generalize to Hamiltonians with Fermionic terms and when the input state is drawn from a low-particle number subspace. Further, when the Hamiltonian itself has Gaussian coefficients (e.g., the SYK models), we show the stronger result that the 2-norm behavior persists even for the worst input state. Our main technical tool is a family of simple but versatile inequalities from non-commutative martingales called uniform smoothness. We use them to derive Hypercontractivity, namely p-norm estimates for low-degree polynomials, which implies concentration via Markov's inequality. In terms of optimality, we give examples that simultaneously match our p-norm bounds and the spectral norm bounds. Therefore, our improvement is due to asking a qualitatively different question from the spectral norm bounds. Our results give evidence that product formulas in practice may generically work much better than expected.Comment: 43 pages, 1 figur

    Fast Thermalization from the Eigenstate Thermalization Hypothesis

    Full text link
    The Eigenstate Thermalization Hypothesis (ETH) has played a major role in explaining thermodynamic phenomena in closed quantum systems. However, no connection has been known between ETH and the timescale of thermalization for open system dynamics. This paper rigorously shows that ETH indeed implies fast thermalization to the global Gibbs state. We show fast convergence for two models of thermalization. In the first, the system is weakly coupled to a bath of quasi-free Fermions that we routinely refresh. We derive a finite-time version of Davies' generator, with explicit error bounds and resource estimates, that describes the joint evolution. The second is Quantum Metropolis Sampling, a quantum algorithm for preparing Gibbs states on a quantum computer. In both cases, no guarantee for fast convergence was previously known for non-commuting Hamiltonians, partly due to technical issues with a finite energy resolution. The critical feature of ETH we exploit is that operators in the energy basis can be modeled by independent random matrices in a near-diagonal band. We show this gives quantum expander at nearby eigenstates of the Hamiltonian. This then implies fast convergence to the global Gibbs state by mapping the problem to a one-dimensional classical random walk on the energy eigenstates. Our results explain finite-time thermalization in chaotic open quantum systems and suggest an alternative formulation of ETH in terms of quantum expanders, which we investigate numerically for small systems.Comment: 76 pages, 14 figures. Corrections in v2 for the system-bath joint evolutio

    Signature of superconducting states in cubic crystal without inversion symmetry

    Full text link
    The effects of absence of inversion symmetry on superconducting states are investigated theoretically. In particular we focus on the noncentrosymmetric compounds which have the cubic symmetry OO like Li2_2Pt3_3B. An appropriate and isotropic spin-orbital interaction is added in the Hamiltonian and it acts like a magnetic monopole in the momentum space. The consequent pairing wavefunction has an additional triplet component in the pseudospin space, and a Zeeman magnetic field B\bf{B} can induce a collinear supercurrent J\bf{J} with a coefficient κ(T)\kappa(T). The effects of anisotropy embedded in the cubic symmetry and the nodal superconducting gap function on κ(T)\kappa(T) are also considered. From the macroscopic perspectives, the pair of mutually induced J\bf{J} and magnetization M{\bf{M}} can affect the distribution of magnetic field in such noncentrosymmetric superconductors, which is studied through solving the Maxwell equation in the Meissner geometry as well as the case of a single vortex line. In both cases, magnetic fields perpendicular to the external ones emerge as a signature of the broken symmetry.Comment: 16 pages in pre-print forma

    BL Lacertae are probable sources of the observed ultra-high energy cosmic rays

    Get PDF
    We calculate angular correlation function between ultra-high energy cosmic rays (UHECR) observed by Yakutsk and AGASA experiments, and most powerful BL Lacertae objects. We find significant correlations which correspond to the probability of statistical fluctuation less than 10−410^{-4}, including penatly for selecting the subset of brightest BL Lacs. We conclude that some of BL Lacs are sources of the observed UHECR and present a list of most probable candidates.Comment: Replaced with the version accepted for publication in JETP Let

    Direct strain and elastic energy evaluation in rolled-up semiconductor tubes by x-ray micro-diffraction

    Full text link
    We depict the use of x-ray diffraction as a tool to directly probe the strain status in rolled-up semiconductor tubes. By employing continuum elasticity theory and a simple model we are able to simulate quantitatively the strain relaxation in perfect crystalline III-V semiconductor bi- and multilayers as well as in rolled-up layers with dislocations. The reduction in the local elastic energy is evaluated for each case. Limitations of the technique and theoretical model are discussed in detail.Comment: 32 pages (single column), 9 figures, 39 reference

    Magnetic field tuning of antiferromagnetic Yb3_{3}Pt4_{4}

    Get PDF
    We present measurements of the specific heat, magnetization, magnetocaloric effect and magnetic neutron diffraction carried out on single crystals of antiferromagnetic Yb3_{3}Pt4_{4}, where highly localized Yb moments order at TN=2.4T_{\rm N}=2.4 K in zero field. The antiferromagnetic order was suppressed to TN→0T_{\rm N}\rightarrow 0 by applying a field of 1.85 T in the abab plane. Magnetocaloric effect measurements show that the antiferromagnetic phase transition is always continuous for TN>0T_{\rm N}>0, although a pronounced step in the magnetization is observed at the critical field in both neutron diffraction and magnetization measurements. These steps sharpen with decreasing temperature, but the related divergences in the magnetic susceptibility are cut off at the lowest temperatures, where the phase line itself becomes vertical in the field-temperature plane. As TN→0T_{\rm N}\rightarrow0, the antiferromagnetic transition is increasingly influenced by a quantum critical endpoint, where TNT_{\rm N} ultimately vanishes in a first order phase transition.Comment: 9 pages, 6 figure

    Radiometric force in dusty plasmas

    Get PDF
    A radiofrequency glow discharge plasma, which is polluted with a certain number of dusty grains, is studied. In addition to various dusty plasma phenomena, several specific colloidal effects should be considered. We focus on radiometric forces, which are caused by inhomogeneous temperature distribution. Aside from thermophoresis, the role of temperature distribution in dusty plasmas is an open question. It is shown that inhomogeneous heating of the grain by ion flows results in a new photophoresis like force, which is specific for dusty discharges. This radiometric force can be observable under conditions of recent microgravity experiments.Comment: 4 pages, amsmat

    Matrix Product Density Operators: when do they have a local parent Hamiltonian?

    Full text link
    We study whether one can write a Matrix Product Density Operator (MPDO) as the Gibbs state of a quasi-local parent Hamiltonian. We conjecture this is the case for generic MPDO and give supporting evidences. To investigate the locality of the parent Hamiltonian, we take the approach of checking whether the quantum conditional mutual information decays exponentially. The MPDO we consider are constructed from a chain of 1-input/2-output (`Y-shaped') completely-positive maps, i.e. the MPDO have a local purification. We derive an upper bound on the conditional mutual information for bistochastic channels and strictly positive channels, and show that it decays exponentially if the correctable algebra of the channel is trivial. We also introduce a conjecture on a quantum data processing inequality that implies the exponential decay of the conditional mutual information for every Y-shaped channel with trivial correctable algebra. We additionally investigate a close but nonequivalent cousin: MPDO measured in a local basis. We provide sufficient conditions for the exponential decay of the conditional mutual information of the measured states, and numerically confirmed they are generically true for certain random MPDO.Comment: Added Github code for Propostion III.6; added few names in acknowledgement after discussion with them about DPI for CM
    • …
    corecore