54,777 research outputs found
Quantum state engineering with flux-biased Josephson phase qubits by Stark-chirped rapid adiabatic passages
In this paper, the scheme of quantum computing based on Stark chirped rapid
adiabatic passage (SCRAP) technique [L. F. Wei et al., Phys. Rev. Lett. 100,
113601 (2008)] is extensively applied to implement the quantum-state
manipulations in the flux-biased Josephson phase qubits. The broken-parity
symmetries of bound states in flux-biased Josephson junctions are utilized to
conveniently generate the desirable Stark-shifts. Then, assisted by various
transition pulses universal quantum logic gates as well as arbitrary
quantum-state preparations could be implemented. Compared with the usual
PI-pulses operations widely used in the experiments, the adiabatic population
passage proposed here is insensitive the details of the applied pulses and thus
the desirable population transfers could be satisfyingly implemented. The
experimental feasibility of the proposal is also discussed.Comment: 9 pages, 4 figure
Geometries and energetics of methanol–ethanol clusters: a VUV laser/time-of-flight mass spectrometry and density functional theory study
Hydrogen-bonded clusters, formed above liquid methanol (Me) and ethanol (Et) mixtures of various compositions, were entrained in a supersonic jet and probed using 118 nm vacuum ultraviolet (VUV) laser single-photon ionization/time-of-flight mass spectrometry. The spectra are dominated by protonated cluster ions, formed by ionizing hydrogen-bonded MemEtn neutrals, m = 0–4, n = 0–3, and m + n = 2–5. The structures and energetics of the neutral and ionic species were investigated using both the all-atom optimized potential for liquid state, OPLS-AA, and the density functional (DFT) calculations. The energetic factors affecting the observed cluster distributions were examined. Calculations indicate that the large change in binding energy going from trimer to tetramer can be attributed more to pair-wise interactions than to cooperativity effects
Apical endosomes isolated from kidney collecting duct principal cells lack subunits of the proton pumping ATPase.
Endocytic vesicles that are involved in the vasopressin-stimulated recycling of water channels to and from the apical membrane of kidney collecting duct principal cells were isolated from rat renal papilla by differential and Percoll density gradient centrifugation. Fluorescence quenching measurements showed that the isolated vesicles maintained a high, HgCl2-sensitive water permeability, consistent with the presence of vasopressin-sensitive water channels. They did not, however, exhibit ATP-dependent luminal acidification, nor any N-ethylmaleimide-sensitive ATPase activity, properties that are characteristic of most acidic endosomal compartments. Western blotting with specific antibodies showed that the 31- and 70-kD cytoplasmically oriented subunits of the vacuolar proton pump were not detectable in these apical endosomes from the papilla, whereas they were present in endosomes prepared in parallel from the cortex. In contrast, the 56-kD subunit of the proton pump was abundant in papillary endosomes, and was localized at the apical pole of principal cells by immunocytochemistry. Finally, an antibody that recognizes the 16-kD transmembrane subunit of oat tonoplast ATPase cross-reacted with a distinct 16-kD band in cortical endosomes, but no 16-kD band was detectable in endosomes from the papilla. This antibody also recognized a 16-kD band in affinity-purified H+ ATPase preparations from bovine kidney medulla. Therefore, early endosomes derived from the apical plasma membrane of collecting duct principal cells fail to acidify because they lack functionally important subunits of a vacuolar-type proton pumping ATPase, including the 16-kD transmembrane domain that serves as the proton-conducting channel, and the 70-kD cytoplasmic subunit that contains the ATPase catalytic site. This specialized, non-acidic early endosomal compartment appears to be involved primarily in the hormonally induced recycling of water channels to and from the apical plasma membrane of vasopressin-sensitive cells in the kidney collecting duct
X(1835): A Natural Candidate of 's Second Radial Excitation
Recently BES collaboration observed one interesting resonance X(1835). We
point out that its mass, total width, production rate and decay pattern favor
its assignment as the second radial excitation of meson very
naturally
- …