90,361 research outputs found

    GRB afterglows: deep Newtonian phase and its application

    Get PDF
    Gamma-ray burst afterglows have been observed for months or even years in a few cases. It deserves noting that at such late stages, the remnants should have entered the deep Newtonian phase, during which the majority of shock-accelerated electrons will no longer be highly relativistic. To calculate the afterglows, we must assume that the electrons obey a power-law distribution according to their kinetic energy, not simply the Lorentz factor.Comment: Poster at the 4th workshop "Gamma-Ray Bursts in the Afterglow Era" (Rome, 2004), accepted for publication in the proceedings. 4 pages, with 3 figures inserte

    Beaming effects in GRBs and orphan afterglows

    Full text link
    The overall dynamical evolution and radiation mechanism of γ\gamma-ray burst jets are briefly introduced. Various interesting topics concerning beaming in γ\gamma-ray bursts are discussed, including jet structures, orphan afterglows and cylindrical jets. The possible connection between γ\gamma-ray bursts and neutron star kicks is also addressed.Comment: 10 Pages, 4 figures, to appear in a special issue of ApSS. Oral report presented at "The Multiwavelength Approach to Unidentified Gamma-Ray Sources" (Hong Kong, June 1 - 4, 2004; Conference organizers: K.S. Cheng and G.E. Romero

    Constraining the bulk Lorentz factor from the photosphere emission

    Get PDF
    We propose a direct and model-independent method to constrain the Lorentz factor of a relativistically expanding object, like gamma-ray bursts. Only the measurements, such as thermal component of the emission, the distance and the variable time scale of the light curve, are used. If the uncertainties are considered, we will obtain lower limits of the Lorentz factor instead. We apply this method to GRB 090618 and get a lower limit of the Lorentz factor to be 22. The method can be used to any relativistically moving object, such as gamma-ray bursts, blazars, and soft gamma-ray repeaters, providing the thermal component of the emission being observed.Comment: 10 pages, 1 figur

    Long-term X-ray emission from Swift J1644+57

    Get PDF
    The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, which is decelerated while sweeping the ambient medium. The peak of each pulse is taken as the maximum emission of each reverse shock. With a proper set of parameters, the envelope of peaks in the light curve as well as the spectrum can be modelled nicely.Comment: 6 pages, 2 figures, accepted for publication in MNRA

    Influence of chirping the Raman lasers in an atom gravimeter: phase shifts due to the Raman light shift and to the finite speed of light

    Full text link
    We present here an analysis of the influence of the frequency dependence of the Raman laser light shifts on the phase of a Raman-type atom gravimeter. Frequency chirps are applied to the Raman lasers in order to compensate gravity and ensure the resonance of the Raman pulses during the interferometer. We show that the change in the Raman light shift when this chirp is applied only to one of the two Raman lasers is enough to bias the gravity measurement by a fraction of μ\muGal (1 μ1~\muGal~=~10810^{-8}~m/s2^2). We also show that this effect is not compensated when averaging over the two directions of the Raman wavevector kk. This thus constitutes a limit to the rejection efficiency of the kk-reversal technique. Our analysis allows us to separate this effect from the effect of the finite speed of light, which we find in perfect agreement with expected values. This study highlights the benefit of chirping symmetrically the two Raman lasers

    Measuring dark energy with the EisoEpE_{\rm iso}-E_{\rm p} correlation of gamma-ray bursts using model-independent methods

    Full text link
    In this paper, we use two model-independent methods to standardize long gamma-ray bursts (GRBs) using the EisoEpE_{\rm iso}-E_{\rm p} correlation, where EisoE_{\rm iso} is the isotropic-equivalent gamma-ray energy and EpE_{\rm p} is the spectral peak energy. We update 42 long GRBs and try to make constraint on cosmological parameters. The full sample contains 151 long GRBs with redshifts from 0.0331 to 8.2. The first method is the simultaneous fitting method. The extrinsic scatter σext\sigma_{\rm ext} is taken into account and assigned to the parameter EisoE_{\rm iso}. The best-fitting values are a=49.15±0.26a=49.15\pm0.26, b=1.42±0.11b=1.42\pm0.11, σext=0.34±0.03\sigma_{\rm ext}=0.34\pm0.03 and Ωm=0.79\Omega_m=0.79 in the flat Λ\LambdaCDM model. The constraint on Ωm\Omega_m is 0.55<Ωm<10.55<\Omega_m<1 at the 1σ\sigma confidence level. If reduced χ2\chi^2 method is used, the best-fit results are a=48.96±0.18a=48.96\pm0.18, b=1.52±0.08b=1.52\pm0.08 and Ωm=0.50±0.12\Omega_m=0.50\pm0.12. The second method is using type Ia supernovae (SNe Ia) to calibrate the EisoEpE_{\rm iso}-E_{\rm p} correlation. We calibrate 90 high-redshift GRBs in the redshift range from 1.44 to 8.1. The cosmological constraints from these 90 GRBs are Ωm=0.230.04+0.06\Omega_m=0.23^{+0.06}_{-0.04} for flat Λ\LambdaCDM, and Ωm=0.18±0.11\Omega_m=0.18\pm0.11 and ΩΛ=0.46±0.51\Omega_{\Lambda}=0.46\pm0.51 for non-flat Λ\LambdaCDM. For the combination of GRB and SNe Ia sample, we obtain Ωm=0.271±0.019\Omega_m=0.271\pm0.019 and h=0.701±0.002h=0.701\pm0.002 for the flat Λ\LambdaCDM, and for the non-flat Λ\LambdaCDM, the results are Ωm=0.225±0.044\Omega_m=0.225\pm0.044, ΩΛ=0.640±0.082\Omega_{\Lambda}=0.640\pm0.082 and h=0.698±0.004h=0.698\pm0.004. These results from calibrated GRBs are consistent with that of SNe Ia. Meanwhile, the combined data can improve cosmological constraints significantly, comparing to SNe Ia alone. Our results show that the EisoEpE_{\rm iso}-E_{\rm p} correlation is promising to probe the high-redshift universe.Comment: 10 pages, 6 figures, 4 table, accepted by A&A. Table 4 contains calibrated distance moduli of GRB

    An unexpectedly low-redshift excess of Swift gamma-ray burst rate

    Get PDF
    Gamma-ray bursts (GRBs) are the most violent explosions in the Universe and can be used to explore the properties of high-redshift universe. It is believed that the long GRBs are associated with the deaths of massive stars. So it is possible to use GRBs to investigate the star formation rate (SFR). In this paper, we use Lynden-Bell's cc^- method to study the luminosity function and rate of \emph{Swift} long GRBs without any assumptions. We find that the luminosity of GRBs evolves with redshift as L(z)g(z)=(1+z)kL(z)\propto g(z)=(1+z)^k with k=2.430.38+0.41k=2.43_{-0.38}^{+0.41}. After correcting the redshift evolution through L0(z)=L(z)/g(z)L_0(z)=L(z)/g(z), the luminosity function can be expressed as ψ(L0)L00.14±0.02\psi(L_0)\propto L_0^{-0.14\pm0.02} for dim GRBs and ψ(L0)L00.70±0.03\psi(L_0)\propto L_0^{-0.70\pm0.03} for bright GRBs, with the break point L0b=1.43×1051 erg s1L_{0}^{b}=1.43\times10^{51}~{\rm erg~s^{-1}}. We also find that the formation rate of GRBs is almost constant at z<1.0z<1.0 for the first time, which is remarkably different from the SFR. At z>1.0z>1.0, the formation rate of GRB is consistent with the SFR. Our results are dramatically different from previous studies. Some possible reasons for this low-redshift excess are discussed. We also test the robustness of our results with Monte Carlo simulations. The distributions of mock data (i.e., luminosity-redshift distribution, luminosity function, cumulative distribution and logNlogS\log N-\log S distribution) are in good agreement with the observations. Besides, we also find that there are remarkable difference between the mock data and the observations if long GRB are unbiased tracers of SFR at z<1.0z<1.0.Comment: 33 pages, 10 figures, 1 table, accepted by ApJ

    A Morphological Approach to the Pulsed Emission from Soft Gamma Repeaters

    Get PDF
    We present a geometrical methodology to interpret the periodical light curves of Soft Gamma Repeaters based on the magnetar model and the numerical arithmetic of the three-dimensional magnetosphere model for the young pulsars. The hot plasma released by the star quake is trapped in the magnetosphere and photons are emitted tangent to the local magnetic field lines. The variety of radiation morphologies in the burst tails and the persistent stages could be well explained by the trapped fireballs on different sites inside the closed field lines. Furthermore, our numerical results suggests that the pulse profile evolution of SGR 1806-20 during the 27 December 2004 giant flare is due to a lateral drift of the emitting region in the magnetosphere.Comment: 7 figures, accepted by Ap

    Analysis of the 3C445 Soft X-ray Spectrum as Observed by Chandra high-energy gratings

    Full text link
    We present a detailed analysis of the soft X-ray emission of 3C445 using an archival Chandra HETG spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα\alpha line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of the G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X RRC feature in the spectrum seems to prefer to a photoionized environment. The spectrum is subsequently modelled with a photoionization model, and the results are compared with that of a collisional model. Through a detailed analysis on the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are logξ\xi = 3.30.3+0.43.3^{+0.4}_{-0.3} erg cm s1^{-1}, nHn_{H} = 54.5+15×10105^{+15}_{-4.5}\times10^{10} cm3^{-3} and NHN_{H} = 2.51.7+3.8×10202.5^{+3.8}_{-1.7}\times10^{20} cm2^{-2}. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred the radial distance (6 ×\times 101410^{14} - 8 ×\times 101510^{15} cm), we suggest the emission lines originating from matter locate in the broad line region (BLR)

    Beaming Effects in Gamma-Ray Bursts

    Get PDF
    Based on a refined generic dynamical model, we investigate afterglows from jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase, the light curve break could marginally be seen. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase, which typically occurs at time 10 to 30 days. It is very interesting that the break is affected by many parameters, especially by the electron energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication of orphan afterglow surveys on GRB beaming is investigated. The possible existence of a kind of cylindrical jets is also discussed.Comment: Minor changes; 10 pages, with 9 eps figures embedded. Talk given at the Sixth Pacific Rim Conference on Stellar Astrophysics (Xi'an, China, July 11-17, 2002). A slightly revised version will appear in the proceeding
    corecore