165 research outputs found

    Goat Milk Oligosaccharides:Their Diversity, Quantity, and Functional Properties in Comparison to Human Milk Oligosaccharides

    Get PDF
    Human milk is considered the golden standard in infant nutrition. Free oligosaccharides in human milk provide important health benefits. These oligosaccharides function as prebiotics, immune modulators, and pathogen inhibitors and were found to improve barrier function in the gut. Infant formulas nowadays often contain prebiotics but lack the specific functions of human milk oligosaccharides (hMOS). Milk from domesticated animals also contains milk oligosaccharides but at much lower levels and with less diversity. Goat milk contains significantly more oligosaccharides (gMOS) than bovine (bMOS) or sheep (sMOS) milk and also has a larger diversity of structures. This review summarizes structural studies, revealing a diversity of up to 77 annotated gMOS structures with almost 40 structures fully characterized. Quantitative studies of goat milk oligosaccharides range from 60 to 350 mg/L in mature milk and from 200 to 650 mg/L in colostrum. These levels are clearly lower than in human milk (5-20 g/L) but higher than in other domesticated dairy animals, e.g., bovine (30-60 mg/L) and sheep (20-40 mg/L). Finally, the review focuses on demonstrated and potential functionalities of gMOS. Some studies have shown anti-inflammatory effects of mixtures enriched in gMOS. Goat MOS also display prebiotic potential, particularly in stimulating growth of bifidobacteria preferentially. Although functional studies of gMOS are still limited, several structures are also found in human milk and have known functions as immune modulators and pathogen inhibitors. In conclusion, goat milk constitutes a promising alternative source for milk oligosaccharides, which can be used in infant formula

    Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri

    Get PDF
    Previously, we have shown that the glucansucrase GtfA-ΔN enzyme of Lactobacillus reuteri 121, incubated with sucrose, efficiently glucosylated catechol and we structurally characterized catechol glucosides with up to five glucosyl units attached (te Poele et al. in Bioconjug Chem 27:937-946, 2016). In the present study, we observed that upon prolonged incubation of GtfA-ΔN with 50 mM catechol and 1000 mM sucrose, all catechol had become completely glucosylated and then started to reappear. Following depletion of sucrose, this glucansucrase GtfA-ΔN used both α-D-Glcp-catechol and α-D-Glcp-(1→4)-α-D-Glcp-catechol as donor substrates and transferred a glucose unit to other catechol glycoside molecules or to sugar oligomers. In the absence of sucrose, GtfA-ΔN used α-D-Glcp-catechol both as donor and acceptor substrate to synthesize catechol glucosides with 2 to 10 glucose units attached and formed gluco-oligosaccharides up to a degree of polymerization of 4. Also two other glucansucrases tested, Gtf180-ΔN from L. reuteri 180 and GtfML1-ΔN from L. reuteri ML1, used α-D-Glcp-catechol and di-glucosyl-catechol as donor/acceptor substrate to synthesize both catechol glucosides and gluco-oligosaccharides. With sucrose as donor substrate, the three glucansucrase enzymes also efficiently glucosylated the phenolic compounds pyrogallol, resorcinol, and ethyl gallate; also these mono-glucosides were used as donor/acceptor substrates

    NO-Donating Aspirin and Aspirin Partially Inhibit Age-Related Atherosclerosis but Not Radiation-Induced Atherosclerosis in ApoE Null Mice

    Get PDF
    BACKGROUND: We previously showed that irradiation to the carotid arteries of ApoE(-/-) mice accelerated the development of macrophage-rich, inflammatory atherosclerotic lesions, prone to intra-plaque hemorrhage. In this study we investigated the potential of anti-inflammatory and anti-coagulant intervention strategies to inhibit age-related and radiation-induced atherosclerosis. METHODOLOGY/PRINCIPAL FINDINGS: ApoE(-/-) mice were given 0 or 14 Gy to the neck and the carotid arteries and aortic arches were harvested at 4 or 30 weeks after irradiation. Nitric oxide releasing aspirin (NCX 4016, 60 mg/kg/day) or aspirin (ASA, 30 or 300 mg/kg/day) were given continuously in the chow. High dose ASA effectively blocked platelet aggregation, while the low dose ASA or NCX 4016 had no significant effect on platelet aggregation. High dose ASA, but not NCX 4016, inhibited endothelial cell expression of VCAM-1 and thrombomodulin in the carotid arteries at 4 weeks after irradiation; eNOS and ICAM-1 levels were unchanged. After 30 weeks of follow-up, NCX 4016 significantly reduced the total number of lesions and the number of initial macrophage-rich lesions in the carotid arteries of unirradiated mice, but these effects were not seen in the brachiocephalic artery of the aortic arch (BCA). In contrast, high dose ASA lead to a decrease in the number of initial lesions in the BCA, but not in the carotid artery. Both high dose ASA and NCX 4016 reduced the collagen content of advanced lesions and increased the total plaque burden in the BCA of unirradiated mice. At 30 weeks after irradiation, neither NCX 4016 nor ASA significantly influenced the number or distribution of lesions, but high dose ASA lead to formation of collagen-rich "stable" advanced lesions in carotid arteries. The total plaque area of the irradiated BCA was increased after ASA, but the plaque burden was very low compared with the carotid artery. CONCLUSIONS/SIGNIFICANCE: The development and characteristics of radiation-induced atherosclerosis varied between different arteries but could not be circumvented by anti-inflammatory and anti-coagulant therapies. This implicates other underlying mechanistic pathways compared to age-related atherosclerosis

    Very early discharge versus early discharge versus non-early discharge in children with cancer and febrile neutropenia

    Get PDF
    Background Chemotherapy-induced neutropenia is a common adverse effect in children with cancer. Due to the high relative risk of infections and infectious complications, standard care for children with cancer and febrile neutropenia consists of routine hospitalization and parenteral administration of broad-spectrum antibiotics. However, there are less serious causes of febrile neutropenia; in a subgroup of these children, lengthy in-hospital treatment might be unnecessary. Various research groups have studied the adjustment of standard care to shorten in-hospital treatment for children with cancer and febrile neutropenia at low risk for bacterial infections. However, most of these studies were not done in a randomized matter. Objectives To evaluate whether early discharge (mean/median of less than five days) from in-hospital treatment was not inferior to non-early discharge (mean/median of five days or more) and whether very early discharge (mean/median of less than 24 hours) was not inferior to early discharge, non-early discharge, or a combination of these, in children with cancer and febrile neutropenia. Search methods We searched the Cochrane Central Register of Controlled Trials (2015, issue 11), MEDLINE/PubMed (from 1945 to December 2015), EMBASE/Ovid (from 1980 to December 2015), the reference lists of relevant articles and review articles, and various conference proceedings (dependent on availability from 2005 to 2010 to 2013 to 2015). We scanned the International Standard Randomised Controlled Trials Number (ISRCTN) Register, the National Institute of Health Register for ongoing trials, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) on 9 January 2016. Selection criteria We included all randomized controlled trials and controlled clinical trials in which children with cancer and febrile neutropenia were divided in groups with different times of discharge. Data collection and analysis We used standard methods of Cochrane and its Childhood Cancer Group. Two independent review authors performed study selection, data extraction, and risk of bias assessment. We entered data extracted from the included studies into Review Manager 5 and undertook analyses according to the guidelines of the Cochrane Handbook for Systematic Reviews of Interventions. Main results We included two randomized controlled trials assessing very early, early, non-early (or a combination of these) discharge in children with cancer and febrile neutropenia. We graded the evidence as low quality; we downgraded for risk of bias and imprecision. One study, Santolaya 2004, consisted of 149 randomized low-risk episodes and compared early discharge (mean/median of less than five days) to non-early discharge (mean/median of five days or more). This study found no clear evidence of difference in treatment failure (risk ratio (RR) 0.91, 95% confidence interval (CI) 0.24 to 3.50, P value = 0.89 for rehospitalization or adjustment of antimicrobial treatment, or both; Fischer's exact P value = 0.477 for death) or duration of treatment (mean difference -0.3 days, 95% CI -1.22 to 0.62, P value = 0.52 for any antimicrobial treatment; mean difference -0.5 days, 95% CI -1.36 to 0.36, P value = 0.25 for intravenous antimicrobial treatment; mean difference 0.2 days, 95% CI -0.51 to 0.91, P value = 0.58 for oral antimicrobial treatment). Costs were lower in the early discharge group (mean difference USD -265, 95% CI USD -403.14 to USD -126.86, P value = 0.0002). The second included study, Brack 2012, consisted of 62 randomized low-risk episodes and compared very early discharge (mean/median of less than 24 hours) to early discharge (mean/median of less than five days). This study also found no clear evidence of difference in treatment failure (RR 0.54, 95% CI 0.15 to 1.89, P value = 0.34 for rehospitalization or adjustment of antimicrobial treatment (or both); Fischer's exact P value = 0.557 for death). Regarding duration of treatment, median duration of intravenous antimicrobial treatment was shorter in the very early discharge group (Wilcoxon's P value = 0.001, stated in the study) and median duration of oral antimicrobial treatment was shorter in the early discharge group (Wilcoxon's P = 0.001, stated in the study) as compared to one another. However, there was no clear evidence of difference in median duration of any antimicrobial treatment (Wilcoxon's P value = 0.34, stated in the study). Costs were not assessed in this study. Neither of the included studies assessed quality of life. Meta-analysis was not possible as the included studies assessed different discharge moments and used different risk stratification models. Authors' conclusions Very limited data were available regarding the safety of early discharge compared to non-early discharge from in-hospital treatment in children with cancer and febrile neutropenia and a low risk for invasive infection. The absence of clear evidence of differences in both studies could be due to lack of power. Evidently, there are still profound gaps regarding very early and early discharge in children with cancer and febrile neutropenia. Future studies that assess this subject should have a large sample size and aim to establish uniform and objective criteria regarding the identification of a low-risk febrile neutropenic episode

    Actinomycete integrative and conjugative elements

    Get PDF
    This paper reviews current knowledge on actinomycete integrative and conjugative elements (AICEs). The best characterised AICEs, pSAM2 of Streptomyces ambofaciens (10.9 kb), SLP1 (17.3 kb) of Streptomyces coelicolor and pMEA300 of Amycolatopsis methanolica (13.3 kb), are present as integrative elements in specific tRNA genes, and are capable of conjugative transfer. These AICEs have a highly conserved structural organisation, with functional modules for excision/integration, replication, conjugative transfer, and regulation. Recently, it has been shown that pMEA300 and the related elements pMEA100 of Amycolatopsis mediterranei and pSE211 of Saccharopolyspora erythraea form a novel group of AICEs, the pMEA-elements, based on the unique characteristics of their replication initiator protein RepAM. Evaluation of a large collection of Amycolatopsis isolates has allowed identification of multiple pMEA-like elements. Our data show that, as AICEs, they mainly coevolved with their natural host in an integrated form, rather than being dispersed via horizontal gene transfer. The pMEA-like elements could be separated into two distinct populations from different geographical origins. One group was most closely related to pMEA300 and was found in isolates from Australia and Asia and pMEA100-related sequences were present in European isolates. Genome sequence data have enormously contributed to the recent insight that AICEs are present in many actinomycete genera. The sequence data also provide more insight into their evolutionary relationships, revealing their modular composition and their likely combined descent from bacterial plasmids and bacteriophages. Evidence is accumulating that AICEs act as modulators of host genome diversity and are also involved in the acquisition of secondary metabolite clusters and foreign DNA via horizontal gene transfer. Although still speculative, these AICEs may play a role in the spread of antibiotic resistance factors into pathogenic bacteria. The novel insights on AICE characteristics presented in this review may be used for the effective construction of new vectors that allows us to engineer and optimise strains for the production of commercially and medically interesting secondary metabolites, and bioactive proteins

    The 894G>T variant in the endothelial nitric oxide synthase gene and spina bifida risk

    Get PDF
    The 894G>T single nucleotide polymorphism (SNP) in the endothelial NOS (NOS3) gene, has recently been associated with embryonic spina bifida risk. In this study, a possible association between the NOS3 894G>T SNP and spina bifida risk in both mothers and children in a Dutch population was examined using both a case-control design and a transmission disequilibrium test (TDT). Possible interactions between the NOS3 894G>T SNP and the MTHFR 677C>T SNP, elevated plasma homocysteine, and decreased plasma folate concentrations were also studied. The NOS3 894TT genotype did not increase spina bifida risk in mothers or children (OR 1.50, 95%CI 0.71–3.19 and OR 1.78, 95%CI 0.75–4.25, respectively). The TDT demonstrated no preferential transmission of the NOS3 894T allele (Χ2 = 0.06, P = 0.81). In combination with the MTHFR 677TT genotype or elevated plasma homocysteine concentrations, the NOS3 894GT/TT genotype increased maternal spina bifida risk (OR 4.52, 95%CI 1.55–13.22 and OR 3.38, 95%CI 1.46–7.84, respectively). In our study population, the NOS3 894GT/TT genotype might be a risk factor for having a spina bifida affected child in mothers who already have an impaired homocysteine metabolism

    Dehydroepiandrosterone inhibits the progression phase of mammary carcinogenesis by inducing cellular senescence via a p16-dependent but p53-independent mechanism

    Get PDF
    INTRODUCTION: Dehydroepiandrosterone (DHEA), an adrenal 17-ketosteroid, is a precursor of testosterone and 17β-estradiol. Studies have shown that DHEA inhibits carcinogenesis in mammary gland and prostate as well as other organs, a process that is not hormone dependent. Little is known about the molecular mechanisms of DHEA-mediated inhibition of the neoplastic process. Here we examine whether DHEA and its analog DHEA 8354 can suppress the progression of hyperplastic and premalignant (carcinoma in situ) lesions in mammary gland toward malignant tumors and the cellular mechanisms involved. METHODS: Rats were treated with N-nitroso-N-methylurea and allowed to develop mammary hyperplastic and premalignant lesions with a maximum frequency 6 weeks after carcinogen administration. The animals were then given DHEA or DHEA 8354 in the diet at 125 or 1,000 mg/kg diet for 6 weeks. The effect of these agents on induction of apoptosis, senescence, cell proliferation, tumor burden and various effectors of cellular signaling were determined. RESULTS: Both agents induced a dose-dependent decrease in tumor multiplicity and in tumor burden. In addition they induced a senescent phenotype in tumor cells, inhibited cell proliferation and increased the number of apoptotic cells. The DHEA-induced cellular effects were associated with increased expression of p16 and p21, but not p53 expression, implicating a p53-independent mechanism in their action. CONCLUSION: We provide evidence that DHEA and DHEA 8354 can suppress mammary carcinogenesis by altering various cellular functions, inducing cellular senescence, in tumor cells with the potential involvement of p16 and p21 in mediating these effects

    Drug-induced senescence bystander proliferation in prostate cancer cells in vitro and in vivo

    Get PDF
    Senescence is a distinct cellular response induced by DNA-damaging agents and other sublethal stressors and may provide novel benefits in cancer therapy. However, in an ageing model, senescent fibroblasts were found to stimulate the proliferation of cocultured cells. To address whether senescence induction in cancer cells using chemotherapy induces similar effects, we used GFP-labelled prostate cancer cell lines and monitored their proliferation in the presence of proliferating or doxorubicin-induced senescent cancer cells in vitro and in vivo. Here, we show that the presence of senescent cancer cells increased the proliferation of cocultured cells in vitro through paracrine signalling factors, but this proliferative effect was significantly less than that seen with senescent fibroblasts. In vivo, senescent cancer cells failed to increase the establishment, growth or proliferation of LNCaP and DU145 xenografts in nude mice. Senescent cells persisted as long as 5 weeks in tumours. Our results demonstrate that although drug-induced senescent cancer cells stimulate the proliferation of bystander cells in vitro, this does not significantly alter the growth of tumours in vivo. Coupled with clinical observations, these data suggest that the proliferative bystander effects of senescent cancer cells are negligible and support the further development of senescence induction as therapy
    corecore