17 research outputs found

    Effects of Millettia macrophylla (Fabaceae) extracts on estrogen target organs of female Wistar rat

    No full text
    The present study aims to determine the estrogenicity of Millettia macrophylla, a Cameroonian medicinal plant, in ovariectomized rats and to investigate the underlying mechanisms, in order to justify scientifically its traditional use. To accomplish this objective, we used dichloromethane (DCM) and methanol (MeOH) extracts of the stem bark of M. macrophylla. In the cell culture based assay, the MeOH extract significantly transactivated estrogen receptor α (ERα) and estrogen receptor β (ERβ); in addition, the estrogen-like effects of both, DCM and MeOH extracts, could be inhibited in vitro by the pure ER antagonist ICI 182,780, indicating that these effects were primarily mediated through ERs. In animal experiments, both DCM and MeOH extracts significantly increased the uterine and vaginal epithelial heights in the 3-day treatment assay, while only the MeOH extract exhibited such effects in the sub-chronic treatment regimen. Furthermore, the MeOH extract significantly decreased fasting serum triglycerides, total cholesterol levels and artherogenic risk in the sub-chronic treatment. These results indicate that M. macrophylla extracts have estrogen-like effects supporting their traditional use in Cameroon to alleviate some menopausal problems (See graphical abstract in Supplementary Fig. 1, available in the online version only). © The Japanese Pharmacological Society

    Millettia macrophylla (Fabaceae) phenolic fraction prevents differentiation of 3T3-L1 adipocytes and the increased risks of cardiovascular diseases in ovariectomized rats

    No full text
    Ethnopharmacological relevance: A prolonged estrogen deficiency alters lipid metabolism and increases risks of cardiovascular diseases. Phytoestrogens, naturally occurring compounds with estrogenic properties are reported to have cardiovascular protective effects. Millettia macrophylla used in the Cameroonian traditional system to treat physiological disorders related to menopause, was previously reported to have estrogenic effects. Aim: We, therefore, proposed evaluating the in vitro and in vivo effects of M. macrophylla phenolic fraction on some risk factors for cardiovascular diseases. Material and methods: In vitro, the ability of the M. macrophylla phenolic fraction (PF) as well as the 9 isolates to prevent the 3T3-L1 preadipocytes differentiation was assessed. Further, the preventive effects of PF on abdominal fat accumulation, body weight gain, lipid profile, nitric oxide level, superoxide dismutase (SOD) and catalase activities, reduced glutathione (GSH) and malondialdehyde (MDA) levels were assessed in a postmenopausal rat model. Results: In vitro, PF and its isolate secundiferol I inhibited lipid accumulation in 3T3-L1 cells. Moreover, all the isolates except daidzein dimethylether prevented the interleukin IL-6 production in 3T3-L1 cells. In vivo, PF prevented ovariectomy-induced abdominal fat accumulation, body weight gain, dyslipidemia, glucose intolerance and decreased atherogenic index. In addition, it induced a vasorelaxant effect by preventing the low level of nitric oxide in the aorta. PF also exhibited antioxidant effects as it increased aorta GSH level, SOD, and catalase activities and decreased MDA level. Conclusions: Taken together, our data suggest that PF prevents the increased risks of cardiovascular diseases in ovariectomized rats. © 2018 Elsevier B.V

    Mycobacterium bovis in Burkina Faso : epidemiologic and genetic links between human and cattle isolates

    No full text
    Background: In sub-Saharan Africa, bovine tuberculosis (bTB) is a potential hazard for animals and humans health. The goal of this study was to improve our understanding of bTB epidemiology in Burkina Faso and especially Mycobacterium bovis transmission within and between the bovine and human populations. Methodology/principal findings: Twenty six M. bovis strains were isolated from 101 cattle carcasses with suspected bTB lesions during routine meat inspections at the Bobo Dioulasso and Ouagadougou slaughterhouses. In addition, 7 M. bovis strains were isolated from 576 patients with pulmonary tuberculosis. Spoligotyping, RDAf1 deletion and MIRU-VNTR typing were used for strains genotyping. The isolation of M. bovis strains was confirmed by spoligotyping and 12 spoligotype signatures were detected. Together, the spoligotyping and MIRU-VNTR data allowed grouping the 33 M. bovis isolates in seven clusters including isolates exclusively from cattle (5) or humans (1) or from both (1). Moreover, these data (genetic analyses and phenetic tree) showed that the M. bovis isolates belonged to the African 1 (Af1) clonal complex (81.8%) and the putative African 5 (Af5) clonal complex (18.2%), in agreement with the results of RDAf1 deletion typing. Conclusions/Significance: This is the first detailed molecular characterization of M. bovis strains from humans and cattle in Burkina Faso. The distribution of the two Af1 and putative Af5 clonal complexes is comparable to what has been reported in neighbouring countries. Furthermore, the strain genetic profiles suggest that M. bovis circulates across the borders and that the Burkina Faso strains originate from different countries, but have a country-specific evolution. The genetic characterization suggests that, currently, M. bovis transmission occurs mainly between cattle, occasionally between cattle and humans and potentially between humans. This study emphasizes the bTB risk in cattle but also in humans and the difficulty to set up proper disease control strategies in Burkina Faso
    corecore