83 research outputs found

    Laser Intensity as a Basis for the Design of Passive Laser Safety Barriers – A Dangerous Approach

    Get PDF
    AbstractModern laser beam sources provide radiation with high output power and brilliance. Additionally, innovative laser system technology enables the deflection of the laser into every direction. These developments depict new aspects in laser safety. On the one hand, there is no standard design approach for laser safety barriers and, on the other hand, no practical database of resulting protection times is available. A prototype test rig was built up, which allows the determinationof the protection time of different passive safety barriers. By experimental investigations, a process model for single steel sheets was established, which provides a relation between the applied process parameters and the protection time of the safety barrier. Within the conducted investigations, the laser power and the spot diameter were varied, whereas former investigations only considered the total laser intensity. The presented results show the influence of the varied parameters on the protection time and provide a first database, which will be extended within further investigations

    Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V

    Get PDF
    Selective laser melting (SLM) process is characterized by large temperature gradients resulting in high levels of residual stress within the additively manufactured metallic structure. SLM-processed Ti6Al4V yields a martensitic microstructure due to the rapid solidification and results in a ductility generally lower than a hot working equivalent. Post-process heat treatments can be applied to SLM components to remove in-built residual stress and improve ductility. Residual stress buildup and the mechanical properties of SLM parts can be controlled by varying the SLM process parameters. This investigation studies the effect of layer thickness on residual stress and mechanical properties of SLM Ti6Al4V parts. This is the first-of-its kind study on the effect of varying power and exposure in conjunction with keeping the energy density constant on residual stress and mechanical properties of SLM Ti6Al4V components. It was found that decreasing power and increasing exposure for the same energy density lowered the residual stress and improved the % elongation of SLM Ti6Al4V parts. Increasing layer thickness resulted in lowering the residual stress at the detriment of mechanical properties. The study is based on detailed experimental analysis along with finite element simulation of the process using ABAQUS to understand the underlying physics of the process
    corecore