758 research outputs found

    A Theory on the Convective Origins of Active Longitudes on Solar-like Stars

    Full text link
    Using a thin flux tube model in a rotating spherical shell of turbulent, solar-like convective flows, we find that the distribution of emerging flux tubes in our simulation is inhomogeneous in longitude, with properties similar to those of active longitudes on the Sun and other solar-like stars. The large-scale pattern of flux emergence our simulations produce exhibits preferred longitudinal modes of low order, drift with respect to a fixed reference system, and alignment across the Equator at low latitudes between 15 degrees. We suggest that these active-longitude-like emergence patterns are the result of columnar, rotationally aligned giant cells present in our convection simulation at low latitudes. If giant convecting cells exist in the bulk of the solar convection zone, this phenomenon, along with differential rotation, could in part provide an explanation for the behavior of active longitudes.Comment: This paper was accepted to The Astrophysical Journal on May 6, 201

    Learning Fair Representations with High-Confidence Guarantees

    Full text link
    Representation learning is increasingly employed to generate representations that are predictive across multiple downstream tasks. The development of representation learning algorithms that provide strong fairness guarantees is thus important because it can prevent unfairness towards disadvantaged groups for all downstream prediction tasks. To prevent unfairness towards disadvantaged groups in all downstream tasks, it is crucial to provide representation learning algorithms that provide fairness guarantees. In this paper, we formally define the problem of learning representations that are fair with high confidence. We then introduce the Fair Representation learning with high-confidence Guarantees (FRG) framework, which provides high-confidence guarantees for limiting unfairness across all downstream models and tasks, with user-defined upper bounds. After proving that FRG ensures fairness for all downstream models and tasks with high probability, we present empirical evaluations that demonstrate FRG's effectiveness at upper bounding unfairness for multiple downstream models and tasks

    Comparing Simulations of Rising Flux Tubes Through the Solar Convection Zone with Observations of Solar Active Regions: Constraining the Dynamo Field Strength

    Full text link
    We study how active-region-scale flux tubes rise buoyantly from the base of the convection zone to near the solar surface by embedding a thin flux tube model in a rotating spherical shell of solar-like turbulent convection. These toroidal flux tubes that we simulate range in magnetic field strength from 15 kG to 100 kG at initial latitudes of 1 degree to 40 degrees in both hemispheres. This article expands upon Weber, Fan, and Miesch (Astrophys. J., 741, 11, 2011) (Article 1) with the inclusion of tubes with magnetic flux of 10^20 Mx and 10^21 Mx, and more simulations of the previously investigated case of 10^22 Mx, sampling more convective flows than the previous article, greatly improving statistics. Observed properties of active regions are compared to properties of the simulated emerging flux tubes, including: the tilt of active regions in accordance with Joy's Law as in Article 1, and in addition the scatter of tilt angles about the Joy's Law trend, the most commonly occurring tilt angle, the rotation rate of the emerging loops with respect to the surrounding plasma, and the nature of the magnetic field at the flux tube apex. We discuss how these diagnostic properties constrain the initial field strength of the active region flux tubes at the bottom of the solar convection zone, and suggest that flux tubes of initial magnetic field strengths of \geq 40 kG are good candidates for the progenitors of large (10^21 Mx to 10^22 Mx) solar active regions, which agrees with the results from Article 1 for flux tubes of 10^22 Mx. With the addition of more magnetic flux values and more simulations, we find that for all magnetic field strengths, the emerging tubes show a positive Joy's Law trend, and that this trend does not show a statistically significant dependence on the magnetic flux.Comment: Accepted to Solar Physics Topical Issue: Solar Dynamics and Magnetism from the Interior to the Atmospher

    A Framework for Detecting Injected Influence Attacks on Microblog Websites Using Change Detection Techniques

    Get PDF
    Presidential elections can impact world peace, global economics, and overall well-being. Recent news indicates that fraud on the Web has played a substantial role in elections, particularly in developing countries in South America and the public discourse, in general. To protect the trustworthiness of the Web, in this paper, we present a novel framework using statistical techniques to help detect veiled Web fraud attacks in Online Social Networks (OSN). Specific examples are used to demonstrate how some statistical techniques, such as the Kalman Filter and the modified CUSUM, can be applied to detect various attack scenarios. A hybrid data set, consisting of both real user tweets collected from Twitter and simulated fake tweets is constructed for testing purposes. The efficacy of the proposed framework has been verified by computing metrics, such as Precision, Recall, and Area Under the ROC curve. The algorithms achieved up to 99.9% accuracy in some scenarios and are over 80% accurate for most of the other scenarios

    A framework for detecting injected influence attacks on microblog websites using change detection techniques

    Get PDF
    Presidential elections can impact world peace, global economics, and overall well-being. Recent news indicates that fraud on the Web has played a substantial role in elections, particularly in developing countries in South America and the public discourse, in general. To protect the trustworthiness of the Web, in this paper, we present a novel framework using statistical techniques to help detect veiled Web fraud attacks in Online Social Networks (OSN). Specific examples are used to demonstrate how some statistical techniques, such as the Kalman Filter and the modified CUSUM, can be applied to detect various attack scenarios. A hybrid data set, consisting of both real user tweets collected from Twitter and simulated fake tweets is constructed for testing purposes. The efficacy of the proposed framework has been verified by computing metrics, such as Precision, Recall, and Area Under the ROC curve. The algorithms achieved up to 99.9% accuracy in some scenarios and are over 80% accurate for most of the other scenarios

    Bubble kinematics in a sheared foam

    Full text link
    We characterize the kinematics of bubbles in a sheared two-dimensional foam using statistical measures. We consider the distributions of both bubble velocities and displacements. The results are discussed in the context of the expected behavior for a thermal system and simulations of the bubble model. There is general agreement between the experiments and the simulation, but notable differences in the velocity distributions point to interesting elements of the sheared foam not captured by prevalent models

    Direct Intracellular Delivery of Cell Impermeable Probes of Protein Glycosylation Using Nanostraws

    Get PDF
    Bioorthogonal chemistry is an effective tool for elucidating metabolic pathways and measuring cellular activity, yet its use is currently limited by the difficulty of getting probes past the cell membrane and into the cytoplasm, especially if more complex probes are desired. Here we present a simple and minimally perturbative technique to deliver functional probes of glycosylation into cells by using a nanostructured “nanostraw” delivery system. Nanostraws provide direct intracellular access to cells through fluid conduits that remain small enough to minimize cell perturbation. First, we demonstrate that our platform can deliver an unmodified azidosugar, N-azidoacetylmannosamine, into cells with similar effectiveness to a chemical modification strategy (peracetylation). We then show that the nanostraw platform enables direct delivery of an azidosugar modified with a charged uridine diphosphate group (UDP) that prevents intracellular penetration, thereby bypassing multiple enzymatic processing steps. By effectively removing the requirement for cell permeability from the probe, the nanostraws expand the toolbox of bioorthogonal probes that can be used to study biological processes on a single, easy-to-use platform

    Drying of Beulah-Zap Lignite

    Get PDF
    Lignite dried in a stream of dry nitrogen at moderate temperatures (20-80-degrees-C) loses water in two distinguishable modes. The first mode represents about 80-85% of the loss of moisture. The second represents the other 15-20% lost under these conditions. The rate follows a unimolecular mechanism (like radioactive decay) for each mode. The activation energy for the first mode is close to the heat of vaporization of water. The rate is dependent upon the gas flow around the sample and the weight (or thickness) of the sample. Work at Amoco Oil Company indicated that the oil yield was higher for the dried coal than for raw or partly dried lignite. Work at Southern Illinois University showed that the mechanism was the same when differential scanning calorimetry was used to follow the kinetics of drying. Other work at the University of Southern Mississippi showed that the physical structure of the lignite (measured by X-rav diffraction) is measurably different for the dried and raw materials
    corecore