481 research outputs found

    Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.

    Get PDF
    Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix

    Stretching Instability of Helical Spring

    Full text link
    We show that when a gradually increasing tensile force is applied to the ends of a helical spring with sufficiently large ratios of radius to pitch and twist to bending rigidity, the end-to-end distance undergoes a sequence of discontinuous stretching transitions. Subsequent decrease of the force leads to step-like contraction and hysteresis is observed. For finite helices, the number of these transitions increases with the number of helical turns but only one stretching and one contraction instability survive in the limit of an infinite helix. We calculate the critical line that separates the region of parameters in which the deformation is continuous from that in which stretching instabilities occur, and propose experimental tests of our predictions.Comment: 5 pages, 4 figure

    Velocity fluctuations of population fronts propagating into metastable states

    Full text link
    The position of propagating population fronts fluctuates because of the discreteness of the individuals and stochastic character of processes of birth, death and migration. Here we consider a Markov model of a population front propagating into a metastable state, and focus on the weak noise limit. For typical, small fluctuations the front motion is diffusive, and we calculate the front diffusion coefficient. We also determine the probability distribution of rare, large fluctuations of the front position and, for a given average front velocity, find the most likely population density profile of the front. Implications of the theory for population extinction risk are briefly considered.Comment: 8 pages, 3 figure

    Fluctuating Elastic Rings: Statics and Dynamics

    Full text link
    We study the effects of thermal fluctuations on elastic rings. Analytical expressions are derived for correlation functions of Euler angles, mean square distance between points on the ring contour, radius of gyration, and probability distribution of writhe fluctuations. Since fluctuation amplitudes diverge in the limit of vanishing twist rigidity, twist elasticity is essential for the description of fluctuating rings. We find a crossover from a small scale regime in which the filament behaves as a straight rod, to a large scale regime in which spontaneous curvature is important and twist rigidity affects the spatial configurations of the ring. The fluctuation-dissipation relation between correlation functions of Euler angles and response functions, is used to study the deformation of the ring by external forces. The effects of inertia and dissipation on the relaxation of temporal correlations of writhe fluctuations, are analyzed using Langevin dynamics.Comment: 43 pages, 9 Figure

    Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode

    Get PDF
    Background Early embryos contain mRNA transcripts expressed from two distinct origins; those expressed from the mother's genome and deposited in the oocyte (maternal) and those expressed from the embryo's genome after fertilization (zygotic). The transition from maternal to zygotic control occurs at different times in different animals according to the extent and form of maternal contributions, which likely reflect evolutionary and ecological forces. Maternally deposited transcripts rely on post-transcriptional regulatory mechanisms for precise spatial and temporal expression in the embryo, whereas zygotic transcripts can use both transcriptional and post-transcriptional regulatory mechanisms. The differences in maternal contributions between animals may be associated with gene regulatory changes detectable by the size and complexity of the associated regulatory regions. Results We have used genomic data to identify and compare maternal and/or zygotic expressed genes from six different animals and find evidence for selection acting to shape gene regulatory architecture in thousands of genes. We find that mammalian maternal genes are enriched for complex regulatory regions, suggesting an increase in expression specificity, while egg-laying animals are enriched for maternal genes that lack transcriptional specificity. Conclusions We propose that this lack of specificity for maternal expression in egg-laying animals indicates that a large fraction of maternal genes are expressed non-functionally, providing only supplemental nutritional content to the developing embryo. These results provide clear predictive criteria for analysis of additional genomes.Molecular and Cellular Biolog

    Modification of oligodeoxynucleotides by on-column Suzuki cross-coupling reactions

    Get PDF
    The on-column functionalization of oligodeoxynucleotides via base-free Suzuki cross-coupling reactions is reported herein. These cross-coupling reactions were carried out with various boronic acids and either full-length modified oligonucleotides containing one or more 2′-deoxy-5-iodouridine (5IdU) monomer(s) or on oligonucleotide fragments immediately after incorporation of 5IdU. Five different functionalities were coupled to oligonucleotides containing one or three attachment points.</p
    corecore