481 research outputs found
Stringent Nucleotide Recognition by the Ribosome at the Middle Codon Position.
Accurate translation of the genetic code depends on mRNA:tRNA codon:anticodon base pairing. Here we exploit an emissive, isosteric adenosine surrogate that allows direct measurement of the kinetics of codon:anticodon University of California base formation during protein synthesis. Our results suggest that codon:anticodon base pairing is subject to tighter constraints at the middle position than at the 5'- and 3'-positions, and further suggest a sequential mechanism of formation of the three base pairs in the codon:anticodon helix
Stretching Instability of Helical Spring
We show that when a gradually increasing tensile force is applied to the ends
of a helical spring with sufficiently large ratios of radius to pitch and twist
to bending rigidity, the end-to-end distance undergoes a sequence of
discontinuous stretching transitions. Subsequent decrease of the force leads to
step-like contraction and hysteresis is observed. For finite helices, the
number of these transitions increases with the number of helical turns but only
one stretching and one contraction instability survive in the limit of an
infinite helix. We calculate the critical line that separates the region of
parameters in which the deformation is continuous from that in which stretching
instabilities occur, and propose experimental tests of our predictions.Comment: 5 pages, 4 figure
Velocity fluctuations of population fronts propagating into metastable states
The position of propagating population fronts fluctuates because of the
discreteness of the individuals and stochastic character of processes of birth,
death and migration. Here we consider a Markov model of a population front
propagating into a metastable state, and focus on the weak noise limit. For
typical, small fluctuations the front motion is diffusive, and we calculate the
front diffusion coefficient. We also determine the probability distribution of
rare, large fluctuations of the front position and, for a given average front
velocity, find the most likely population density profile of the front.
Implications of the theory for population extinction risk are briefly
considered.Comment: 8 pages, 3 figure
Fluctuating Elastic Rings: Statics and Dynamics
We study the effects of thermal fluctuations on elastic rings. Analytical
expressions are derived for correlation functions of Euler angles, mean square
distance between points on the ring contour, radius of gyration, and
probability distribution of writhe fluctuations. Since fluctuation amplitudes
diverge in the limit of vanishing twist rigidity, twist elasticity is essential
for the description of fluctuating rings. We find a crossover from a small
scale regime in which the filament behaves as a straight rod, to a large scale
regime in which spontaneous curvature is important and twist rigidity affects
the spatial configurations of the ring. The fluctuation-dissipation relation
between correlation functions of Euler angles and response functions, is used
to study the deformation of the ring by external forces. The effects of inertia
and dissipation on the relaxation of temporal correlations of writhe
fluctuations, are analyzed using Langevin dynamics.Comment: 43 pages, 9 Figure
Composition and regulation of maternal and zygotic transcriptomes reflects species-specific reproductive mode
Background
Early embryos contain mRNA transcripts expressed from two distinct origins; those expressed from the mother's genome and deposited in the oocyte (maternal) and those expressed from the embryo's genome after fertilization (zygotic). The transition from maternal to zygotic control occurs at different times in different animals according to the extent and form of maternal contributions, which likely reflect evolutionary and ecological forces. Maternally deposited transcripts rely on post-transcriptional regulatory mechanisms for precise spatial and temporal expression in the embryo, whereas zygotic transcripts can use both transcriptional and post-transcriptional regulatory mechanisms. The differences in maternal contributions between animals may be associated with gene regulatory changes detectable by the size and complexity of the associated regulatory regions.
Results
We have used genomic data to identify and compare maternal and/or zygotic expressed genes from six different animals and find evidence for selection acting to shape gene regulatory architecture in thousands of genes. We find that mammalian maternal genes are enriched for complex regulatory regions, suggesting an increase in expression specificity, while egg-laying animals are enriched for maternal genes that lack transcriptional specificity.
Conclusions
We propose that this lack of specificity for maternal expression in egg-laying animals indicates that a large fraction of maternal genes are expressed non-functionally, providing only supplemental nutritional content to the developing embryo. These results provide clear predictive criteria for analysis of additional genomes.Molecular and Cellular Biolog
Modification of oligodeoxynucleotides by on-column Suzuki cross-coupling reactions
The on-column functionalization of oligodeoxynucleotides via base-free Suzuki cross-coupling reactions is reported herein. These cross-coupling reactions were carried out with various boronic acids and either full-length modified oligonucleotides containing one or more 2′-deoxy-5-iodouridine (5IdU) monomer(s) or on oligonucleotide fragments immediately after incorporation of 5IdU. Five different functionalities were coupled to oligonucleotides containing one or three attachment points.</p
- …
