1,961 research outputs found

    Trace inequalities on a generalized Wigner-Yanase skew information

    Get PDF
    We introduce a generalized Wigner-Yanase skew information and then derive the trace inequality related to the uncertainty relation. This inequality is a non-trivial generalization of the uncertainty relation derived by S.Luo for the quantum uncertainty quantity excluding the classical mixure. In addition, several trace inequalities on our generalized Wigner-Yanase skew information are argued

    Multipole expansion for magnetic structures: A generation scheme for symmetry-adapted orthonormal basis set in crystallographic point group

    Get PDF
    We propose a systematic method to generate a complete orthonormal basis set of multipole expansion for magnetic structures in arbitrary crystal structure. The key idea is the introduction of a virtual atomic cluster of a target crystal, on which we can clearly define the magnetic configurations corresponding to symmetry-adapted multipole moments. The magnetic configurations are then mapped onto the crystal so as to preserve the magnetic point group of the multipole moments, leading to the magnetic structures classified according to the irreducible representations of crystallographic point group. We apply the present scheme to pyrhochlore and hexagonal ABO3 crystal structures, and demonstrate that the multipole expansion is useful to investigate the macroscopic responses of antiferromagnets

    Orbital Order, Structural Transition and Superconductivity in Iron Pnictides

    Full text link
    We investigate the 16-band d-p model for iron pnictide superconductors in the presence of the electron-phonon coupling g with the orthorhombic mode which is crucial for reproducing the recently observed ultrasonic softening. Within the RPA, we obtain the ferro-orbital order below TQ which induces the tetragonal-orthorhombic structural transition at Ts = TQ, together with the stripe-type antiferromagnetic order below TN. Near the phase transitions, the system shows the s++ wave superconductivity due to the orbital fluctuation for a large g case with TQ > TN, while the s+- wave due to the magnetic fluctuation for a small g case with TQ < TN. The former case is consistent with the phase diagram of doped iron pnictides with Ts > TN.Comment: 5 pages, 5 figures, minor changes, published in J. Phys. Soc. Jp
    corecore