
J. Math. Anal. Appl. 356 (2009) 179–185

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Trace inequalities on a generalized Wigner–Yanase skew information

S. Furuichi a,∗,1, K. Yanagi b,2, K. Kuriyama b

a Department of Computer Science and System Analysis, College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajyousui, Setagaya-ku,
Tokyo, 156-8550, Japan
b Division of Applied Mathematical Science, Graduate School of Science and Engineering, Yamaguchi University, Tokiwadai 2-16-1, Ube City, 755-0811, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 September 2008
Available online 4 March 2009
Submitted by Goong Chen

Keywords:
Trace inequality
Wigner–Yanase skew information
Wigner–Yanase–Dyson skew information
and uncertainty relation

We introduce a generalized Wigner–Yanase skew information and then derive the trace
inequality related to the uncertainty relation. This inequality is a non-trivial generalization
of the uncertainty relation derived by S. Luo for the quantum uncertainty quantity
excluding the classical mixture. In addition, several trace inequalities on our generalized
Wigner–Yanase skew information are argued.
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1. Introduction

Wigner–Yanase skew information

Iρ(H) ≡ 1

2
Tr

[(
i
[
ρ1/2, H

])2] = Tr
[
ρH2] − Tr

[
ρ1/2 Hρ1/2 H

]
(1.1)

was defined in [8]. This quantity can be considered as a kind of the degree for non-commutativity between a quantum state
ρ and an observable H . Here we denote the commutator by [X, Y ] ≡ XY − Y X . This quantity was generalized by Dyson

Iρ,α(H) ≡ 1

2
Tr

[(
i
[
ρα, H

])(
i
[
ρ1−α, H

])] = Tr
[
ρH2] − Tr

[
ρα Hρ1−α H

]
, α ∈ [0,1],

which is known as the Wigner–Yanase–Dyson skew information. It is famous that the convexity of Iρ,α(H) with respect
to ρ was successfully proven by E.H. Lieb in [5]. From the physical point of view, an observable H is generally considered
to be an unbounded operator, however in the present paper, unless otherwise stated, we consider H ∈ B(H), where B(H)

represents the set of all bounded linear operators on the Hilbert space H, as a mathematical interest. We also denote the
set of all self-adjoint operators (observables) by Lh(H) and the set of all density operators (quantum states) by S(H) on
the Hilbet space H. The relation between the Wigner–Yanase skew information and the uncertainty relation was studied
in [7]. Moreover the relation between the Wigner–Yanase–Dyson skew information and the uncertainty relation was studied
in [4,9]. In our previous paper [9], we defined a generalized skew information and then derived a kind of an uncertainty
relation. In Section 2, we introduce a new generalized Wigner–Yanase skew information. On a generalization of the original
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Wigner–Yanase skew information, our generalization is different from the Wigner–Yanase–Dyson skew information and a
generalized skew information defined in our previous paper [9]. Moreover we define a new quantity by our generalized
Wigner–Yanase skew information and then we derive the trace inequality expressing a kind of the uncertainty relation.

2. Trace inequalities on a generalized Wigner–Yanase skew information

Firstly we review the relation between the Wigner–Yanase skew information and the uncertainty relation. In quantum
mechanical system, the expectation value of an observable H in a quantum state ρ is expressed by Tr[ρH]. It is natural that
the variance for a quantum state ρ and an observable H is defined by Vρ(H) ≡ Tr[ρ(H − Tr[ρH]I)2] = Tr[ρH2] − Tr[ρH]2.
It is famous that we have the Heisenberg’s uncertainty relation:

Vρ(A)Vρ(B) � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

(2.1)

for a quantum state ρ and two observables A and B . The further strong result was given by Schrödinger

Vρ(A)Vρ(B) − ∣∣Covρ(A, B)
∣∣2 � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

,

where the covariance is defined by Covρ(A, B) ≡ Tr[ρ(A − Tr[ρ A]I)(B − Tr[ρB]I)]. However, the uncertainty relation for the
Wigner–Yanase skew information failed (see [4,7,9])

Iρ(A)Iρ(B) � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

.

Recently, S. Luo introduced the quantity Uρ(H) representing a quantum uncertainty excluding the classical mixture:

Uρ(H) ≡
√

Vρ(H)2 − (
Vρ(H) − Iρ(H)

)2
, (2.2)

then he derived the uncertainty relation on Uρ(H) in [6]:

Uρ(A)Uρ(B) � 1

4

∣∣Tr
[
ρ[A, B]]∣∣2

. (2.3)

Note that we have the following relation

0 � Iρ(H) � Uρ(H) � Vρ(H). (2.4)

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4).
In this section, we study one-parameter extended inequality for the inequality (2.3).

Definition 2.1. For 0 � α � 1, a quantum state ρ and an observable H , we define the Wigner–Yanase–Dyson skew informa-
tion

Iρ,α(H) ≡ 1

2
Tr

[(
i
[
ρα, H0

])(
i
[
ρ1−α, H0

])]
(2.5)

and we also define

Jρ,α(H) ≡ 1

2
Tr

[{
ρα, H0

}{
ρ1−α, H0

}]
,

where H0 ≡ H − Tr[ρH]I and we denote the anti-commutator by {X, Y } = XY + Y X .

Note that we have

1

2
Tr

[(
i
[
ρα, H0

])(
i
[
ρ1−α, H0

])] = 1

2
Tr

[(
i
[
ρα, H

])(
i
[
ρ1−α, H

])]
but we have

1

2
Tr

[{
ρα, H0

}{
ρ1−α, H0

}] �= 1

2
Tr

[{
ρα, H

}{
ρ1−α, H

}]
.

Then we have the following inequalities:

Iρ,α(H) � Iρ(H) � Jρ(H) � Jρ,α(H), (2.6)

since we have Tr[ρ1/2 Hρ1/2 H] � Tr[ρα Hρ1−α H]. (See [1,2] for example.) If we define

Uρ,α(H) ≡
√

Vρ(H)2 − (
Vρ(H) − Iρ,α(H)

)2
, (2.7)
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as a direct generalization of Eq. (2.2), then we have

0 � Iρ,α(H) � Uρ,α(H) � Uρ(H) (2.8)

due to the first inequality of (2.6). We also have

Uρ,α(H) =
√

Iρ,α(H) Jρ,α(H). (2.9)

Remark 2.2. From the inequalities (2.4), (2.6) and (2.8), our situation is that we have

0 � Iρ,α(H) � Iρ(H) � Uρ(H)

and

0 � Iρ,α(H) � Uρ,α(H) � Uρ(H).

Therefore our first concern is the ordering between Iρ(H) and Uρ,α(H). However we have no ordering between them.
Because we have the following examples. We set the density matrix ρ and the observable H such as

ρ =
(

0.6 0.48
0.48 0.4

)
, H =

(
1.0 0.5
0.5 5.0

)
.

If α = 0.1, then Uρ,α(H) − Iρ(H) approximately takes −0.14736. If α = 0.2, then Uρ,α(H) − Iρ(H) approximately takes
0.4451.

Conjecture 2.3. Our second concern is to show an uncertainty relation with respect to Uρ,α(H) as a direct generalization of the
inequality (2.3) such that

Uρ,α(X)Uρ,α(Y ) � 1

4

∣∣Tr
[
ρ[X, Y ]]∣∣2

. (2.10)

However we have not found the proof of the above inequality (2.10). In addition, we have not found any counter-examples of the
inequality (2.10) yet.

In the present paper, we introduce a generalized Wigner–Yanase skew information which is a generalization of the
Wigner–Yanase skew information defined in Eq. (1.1), but different from the Wigner–Yanase–Dyson skew information de-
fined in Eq. (2.5).

Definition 2.4. For 0 � α � 1, a quantum state ρ and an observable H , we define a generalized Wigner–Yanase skew
information by

Kρ,α(H) ≡ 1

2
Tr

[(
i

[
ρα + ρ1−α

2
, H0

])2]

and we also define

Lρ,α(H) ≡ 1

2
Tr

[({
ρα + ρ1−α

2
, H0

})2]
.

Remark 2.5. For two generalized Wigner–Yanase skew informations Iρ,α(H) and Kρ,α(H), we have the relation:

Iρ,α(H) � Kρ,α(H).

Indeed, for a spectral decomposition of ρ such as ρ = ∑
k λk|φk〉〈φk|, we have the following expressions:

Iρ,α(H) = 1

2

∑
m,n

(
λα

m − λα
n

)(
λ1−α

m − λ1−α
n

)∣∣〈φm|H|φn
〉∣∣2

and

Kρ,α(H) = 1

2

∑
m,n

(
λα

m − λα
n + λ1−α

m − λ1−α
n

2

)2∣∣〈φm|H|φn
〉∣∣2

.

By simple calculations, we see
(

λα
m − λα

n + λ1−α
m − λ1−α

n

2

)2

− (
λα

m − λα
n

)(
λ1−α

m − λ1−α
n

)
� 0.
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Throughout this section, we put X0 ≡ X − Tr[ρ X]I and Y0 ≡ Y − Tr[ρY ]I . Then we show the following trace inequality.

Theorem 2.6. For a quantum state ρ and observables X, Y and α ∈ [0,1], we have

Wρ,α(X)Wρ,α(Y ) � 1

4

∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]
]∣∣∣∣

2

(2.11)

where

Wρ,α(X) ≡
√

Kρ,α(X)Lρ,α(X).

Proof. Putting

M ≡ i

[
ρα + ρ1−α

2
, X0

]
x +

{
ρα + ρ1−α

2
, Y0

}
(2.12)

for any x ∈ R, then we have

0 � Tr
[
M∗M

] =
(

1

4
Tr

[(
i
[
ρα, X0

])2 + (
i
[
ρ1−α, X0

])2] + Iρ,α(X)

)
x2

+ 1

2
Tr

[(
i
[
ρα, X0

] + i
[
ρ1−α, X0

])({
ρα, Y0

} + {
ρ1−α, Y0

})]
x

+
(

1

4
Tr

[{
ρα, Y0

}2 + {
ρ1−α, Y0

}2] + Jρ,α(Y )

)
.

Therefore we have

1

4

∣∣Tr
[(

ρα + ρ1−α
)2(

i[X, Y ])]∣∣2 � 4

(
1

4
Tr

[(
i
[
ρα, X0

])2 + (
i
[
ρ1−α, X0

])2] + Iρ,α(X)

)

×
(

1

4
Tr

[{
ρα, Y0

}2 + {
ρ1−α, Y0

}2] + Jρ,α(Y )

)
,

since we have

Tr
[(

i
[
ρα, X0

] + i
[
ρ1−α, X0

])({
ρα, Y0

} + {
ρ1−α, Y0

})] = Tr
[(

ρα + ρ1−α
)2(

i[X, Y ])].
As similar as we have

1

4

∣∣Tr
[(

ρα + ρ1−α
)2(

i[X, Y ])]∣∣2 � 4

(
1

4
Tr

[(
i
[
ρα, Y0

])2 + (
i
[
ρ1−α, Y0

])2] + Iρ,α(Y )

)

×
(

1

4
Tr

[{
ρα, X0

}2 + {
ρ1−α, X0

}2] + Jρ,α(X)

)
.

By the above two inequalities, we have

Wρ,α(X)Wρ,α(Y ) � 1

4

∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]
]∣∣∣∣

2

. �

Corollary 2.7. For a quantum state ρ and observables (possibly unbounded operators) X, Y and α ∈ [0,1], if we have the relation
[X, Y ] = 1

2π i I on dom(XY ) ∩ dom(Y X) and ρ is expressed by ρ = ∑
k λk|φk〉〈φk|, |φk〉 ∈ dom(XY ) ∩ dom(Y X), then

Wρ,α(X)Wρ,α(Y ) � 1

4

∣∣Tr
[
ρ[X, Y ]]∣∣2

.

Proof. It follows from Theorem 2.6 and the following inequality:

1

4

∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]
]∣∣∣∣

2

� 1

4

∣∣Tr
[
ρ[X, Y ]]∣∣2

,

whenever we have the canonical commutation relation such as [X, Y ] = 1 I . �
2π i
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Remark 2.8. Theorem 2.6 is not trivial one in the sense of the following (i) and (ii).
(i) Since the arithmetic mean is greater than the geometric mean, Tr[(i[ρα, X0])2] � 0 and Tr[(i[ρ1−α, X0])2] � 0 imply

Kρ,α(X) � Iρ,α(X), by the use of Schwarz’s inequality. Similarly, Tr[{ρα, Y0}2] � 0 and Tr[{ρ1−α, Y0}2] � 0 imply Lρ,α(Y ) �
Jρ,α(Y ). We then have Wρ,α(X) � Uρ,α(X).

From the inequality (2.8) and the above, our situation is that we have

Uρ,α(H) � Uρ(H)

and

Uρ,α(H) � Wρ,α(H).

Our third concern is the ordering between Uρ(H) and Wρ,α(H). However, we have no ordering between them. Because
we have the following examples. We set

ρ =
(

0.8 0.0
0.0 0.2

)
, H =

(
2.0 3.0
3.0 1.0

)
.

If we take α = 0.8, then Uρ(H) − Wρ,α(H) approximately takes −0.0241367. If we take α = 0.9, then Uρ(H) − Wρ,α(H)

approximately takes 0.404141. This example actually shows that there exists a triplet of α, ρ and H such that Wρ,α(H) <

Vρ(H), since we have Uρ(H) � Vρ(H) in general.

(ii) We have no ordering between |Tr[( ρα+ρ1−α

2 )2[X, Y ]]|2 and |Tr[ρ[X, Y ]]|2, by the following examples. If we take

ρ = 1

7

⎛
⎝ 2 2i 1

−2i 3 −2i
1 2i 2

⎞
⎠ , X =

⎛
⎝ 3 3 −i

3 1 0
i 0 1

⎞
⎠ , Y =

⎛
⎝ 1 −i 1 − i

i 1 i
1 + i −i 3

⎞
⎠ ,

then we have∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]
]∣∣∣∣

2

	 0.348097,
∣∣Tr

[
ρ[X, Y ]]∣∣2 	 0.326531.

If we take

ρ = 1

7

⎛
⎝ 2 2i 1

−2i 3 −2i
1 2i 2

⎞
⎠ , X =

⎛
⎝ 3 3 −i

3 1 0
i 0 1

⎞
⎠ , Y =

⎛
⎝ 1 −i 0

i 1 i
0 −i 3

⎞
⎠ ,

then we have∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]
]∣∣∣∣

2

	 0.304377,
∣∣Tr

[
ρ[X, Y ]]∣∣2 	 0.326531.

Remark 2.9.

(i) If we take M = ρ1/2 X0x+ρ1/2Y0 for any x ∈ R presented in Eq. (2.12), we recover the Heisenberg’s uncertainty relation
(2.1) shown in [3].

(ii) If we take α = 1
2 , then we recover the inequality (2.3) presented in [6].

(iii) We have another inequalities which are different from the inequality (2.11), by taking different self-adjoint operators M
appeared in the proof of Theorem 2.6.

Conjecture 2.10. Our fourth concern is whether the following inequality:

Uρ,α(X)Uρ,α(Y ) � 1

4

∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]
]∣∣∣∣

2

(2.13)

holds or not. However we have not found its proof and any counter-examples yet.

Kρ,α(H) and Lρ,α(H) are respectively rewritten by

Kρ,α(H) = Tr

[(
ρα + ρ1−α

2

)2

H2
0 −

(
ρα + ρ1−α

2

)
H0

(
ρα + ρ1−α

2

)
H0

]

and

Lρ,α(H) = Tr

[(
ρα + ρ1−α )2

H2
0 +

(
ρα + ρ1−α )

H0

(
ρα + ρ1−α )

H0

]
.

2 2 2
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Thus we have

1

2
Tr

[(
i

[
ρα + ρ1−α

2
, H0

])2]
= 1

2
Tr

[(
i

[
ρα + ρ1−α

2
, H

])2]

but we have

1

2
Tr

[({
ρα + ρ1−α

2
, H0

})2]
�= 1

2
Tr

[({
ρα + ρ1−α

2
, H

})2]
.

In addition, we have Lρ,α(H) � Kρ,α(H) which implies

Wρ,α(H) ≡
√

Kρ,α(H)Lρ,α(H) �
√

Kρ,α(H)Kρ,α(H) � Kρ,α(H).

Therefore our fifth concern is whether the following inequality for α ∈ [0,1] holds or not:

Kρ,α(X)Kρ,α(Y ) � 1

4

∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]
]∣∣∣∣

2

. (2.14)

However this inequality fails, because we have a counter-example. If we set α = 1
2 and

ρ = 1

4

(
3 0
0 1

)
, X =

(
0 i
−i 0

)
, Y =

(
0 1
1 0

)
.

Then we have

Kρ,α(X)Kρ,α(Y ) = Iρ(X)Iρ(Y ) =
(

1 − √
3

2

)2

and

1

4

∣∣∣∣Tr

[(
ρα + ρ1−α

2

)2

[X, Y ]
]∣∣∣∣

2

= 1

4

∣∣Tr
[
ρ[X, Y ]]∣∣2 = 1

4
.

Thus the inequality (2.14) does not hold in general.
Before closing this section, we reconsider the ordering Wρ,α(H) and Vρ(H), although we have already stated an example

of the triplet α,ρ and H satisfying Wρ,α(H) < Vρ(H) in the last line of (i) of Remark 2.8. If we set α = 1
5 and

ρ =
(

0.3 0.45
0.45 0.7

)
, H =

(
1 3
3 1

)
.

Then Vρ(H) − Wρ,α(H) approximately takes −0.3072. If we set α = 1
5 and

ρ =
(

0.3 0.4
0.4 0.7

)
, H =

(
1 3
3 1

)
.

Then Vρ(H) − Wρ,α(H) approximately takes 0.682011. Therefore we have no ordering between Wρ,α(H) and Vρ(H). Thus
it is natural for us to have an interest in the following conjecture, since we have Kρ,α(H) � Wρ,α(H) in general.

Conjecture 2.11. Our final concern is whether the following inequality:

Kρ,α(H) � Vρ(H), α ∈ [0,1], (2.15)

holds or not. However we have not found its proof and any counter-examples yet.

3. Concluding remarks

As we have seen, we introduced a generalized Wigner–Yanase skew information Kρ,α(H) and then defined a new
quantity Wρ,α(H). We note that our generalized Wigner–Yanase skew information Kρ,α(H) is different type of the Wigner–
Yanase–Dyson skew information Iρ,α(H). For the quantity Kρ,α(H), we do not have a trace inequality related to an
uncertainty relation. However, we showed that we have a trace inequality related to an uncertainty relation for the quantity
Wρ,α(H). This inequality is a non-trivial one-parameter extension of the uncertainty relation (2.3) shown by S. Luo in [6].
In addition, we studied several trace inequalities on informational quantities.
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Finally, we give another generalized trace inequality of the inequality (2.3). For a quantum state ρ an observable H and
α ∈ [0,1], we define

Zρ,α(H) ≡ 1

4

√
Tr

[(
i
[
ρα, H0

])2]
Tr

[(
i
[
ρ1−α, H0

])2]
Tr

[{
ρα, H0

}2]
Tr

[{
ρ1−α, H0

}2]
,

with H0 ≡ H − Tr[ρH]I . Then we have the following inequality
√

Zρ,α(X)Zρ,α(Y ) � 1

4

∣∣Tr
[
ρ2α[X, Y ]]Tr

[
ρ2(1−α)[X, Y ]]∣∣, (3.1)

for a quantum state ρ , two observables X, Y and α ∈ [0,1]. We note that the inequality (3.1) recovers the inequality (2.3)
by taking α = 1/2 and we do not have any weak-strong relation between the inequality (2.11) and the inequality (3.1).
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