Trace inequalities on a generalized Wigner-Yanase skew information

S. Furuichi ${ }^{\text {a,*, }}$, K. Yanagi ${ }^{\text {b,2 }}$, K. Kuriyama ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science and System Analysis, College of Humanities and Sciences, Nihon University, 3-25-40, Sakurajyousui, Setagaya-ku, Tokyo, 156-8550, Japan
${ }^{\text {b }}$ Division of Applied Mathematical Science, Graduate School of Science and Engineering, Yamaguchi University, Tokiwadai 2-16-1, Ube City, 755-0811, Japan

A R T I C L E IN F O

Article history:

Received 9 September 2008
Available online 4 March 2009
Submitted by Goong Chen

Keywords:

Trace inequality
Wigner-Yanase skew information
Wigner-Yanase-Dyson skew information and uncertainty relation

Abstract

We introduce a generalized Wigner-Yanase skew information and then derive the trace inequality related to the uncertainty relation. This inequality is a non-trivial generalization of the uncertainty relation derived by S. Luo for the quantum uncertainty quantity excluding the classical mixture. In addition, several trace inequalities on our generalized Wigner-Yanase skew information are argued.

(c) 2009 Elsevier Inc. All rights reserved.

1. Introduction

Wigner-Yanase skew information

$$
\begin{equation*}
I_{\rho}(H) \equiv \frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{1 / 2}, H\right]\right)^{2}\right]=\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}\left[\rho^{1 / 2} H \rho^{1 / 2} H\right] \tag{1.1}
\end{equation*}
$$

was defined in [8]. This quantity can be considered as a kind of the degree for non-commutativity between a quantum state ρ and an observable H. Here we denote the commutator by $[X, Y] \equiv X Y-Y X$. This quantity was generalized by Dyson

$$
I_{\rho, \alpha}(H) \equiv \frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H\right]\right)\left(i\left[\rho^{1-\alpha}, H\right]\right)\right]=\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}\left[\rho^{\alpha} H \rho^{1-\alpha} H\right], \quad \alpha \in[0,1],
$$

which is known as the Wigner-Yanase-Dyson skew information. It is famous that the convexity of $I_{\rho, \alpha}(H)$ with respect to ρ was successfully proven by E.H. Lieb in [5]. From the physical point of view, an observable H is generally considered to be an unbounded operator, however in the present paper, unless otherwise stated, we consider $H \in B(\mathcal{H})$, where $B(\mathcal{H})$ represents the set of all bounded linear operators on the Hilbert space \mathcal{H}, as a mathematical interest. We also denote the set of all self-adjoint operators (observables) by $\mathcal{L}_{h}(\mathcal{H})$ and the set of all density operators (quantum states) by $\mathfrak{S}(\mathcal{H})$ on the Hilbet space \mathcal{H}. The relation between the Wigner-Yanase skew information and the uncertainty relation was studied in [7]. Moreover the relation between the Wigner-Yanase-Dyson skew information and the uncertainty relation was studied in [4,9]. In our previous paper [9], we defined a generalized skew information and then derived a kind of an uncertainty relation. In Section 2, we introduce a new generalized Wigner-Yanase skew information. On a generalization of the original

[^0]Wigner-Yanase skew information, our generalization is different from the Wigner-Yanase-Dyson skew information and a generalized skew information defined in our previous paper [9]. Moreover we define a new quantity by our generalized Wigner-Yanase skew information and then we derive the trace inequality expressing a kind of the uncertainty relation.

2. Trace inequalities on a generalized Wigner-Yanase skew information

Firstly we review the relation between the Wigner-Yanase skew information and the uncertainty relation. In quantum mechanical system, the expectation value of an observable H in a quantum state ρ is expressed by $\operatorname{Tr}[\rho H]$. It is natural that the variance for a quantum state ρ and an observable H is defined by $V_{\rho}(H) \equiv \operatorname{Tr}\left[\rho(H-\operatorname{Tr}[\rho H] I)^{2}\right]=\operatorname{Tr}\left[\rho H^{2}\right]-\operatorname{Tr}[\rho H]^{2}$. It is famous that we have the Heisenberg's uncertainty relation:

$$
\begin{equation*}
V_{\rho}(A) V_{\rho}(B) \geqslant \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2} \tag{2.1}
\end{equation*}
$$

for a quantum state ρ and two observables A and B. The further strong result was given by Schrödinger

$$
V_{\rho}(A) V_{\rho}(B)-\left|\operatorname{Cov}_{\rho}(A, B)\right|^{2} \geqslant \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

where the covariance is defined by $\operatorname{Cov}_{\rho}(A, B) \equiv \operatorname{Tr}[\rho(A-\operatorname{Tr}[\rho A] I)(B-\operatorname{Tr}[\rho B] I)]$. However, the uncertainty relation for the Wigner-Yanase skew information failed (see [4,7,9])

$$
I_{\rho}(A) I_{\rho}(B) \geqslant \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2}
$$

Recently, S. Luo introduced the quantity $U_{\rho}(H)$ representing a quantum uncertainty excluding the classical mixture:

$$
\begin{equation*}
U_{\rho}(H) \equiv \sqrt{V_{\rho}(H)^{2}-\left(V_{\rho}(H)-I_{\rho}(H)\right)^{2}} \tag{2.2}
\end{equation*}
$$

then he derived the uncertainty relation on $U_{\rho}(H)$ in [6]:

$$
\begin{equation*}
U_{\rho}(A) U_{\rho}(B) \geqslant \frac{1}{4}|\operatorname{Tr}[\rho[A, B]]|^{2} . \tag{2.3}
\end{equation*}
$$

Note that we have the following relation

$$
\begin{equation*}
0 \leqslant I_{\rho}(H) \leqslant U_{\rho}(H) \leqslant V_{\rho}(H) . \tag{2.4}
\end{equation*}
$$

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4).
In this section, we study one-parameter extended inequality for the inequality (2.3).

Definition 2.1. For $0 \leqslant \alpha \leqslant 1$, a quantum state ρ and an observable H, we define the Wigner-Yanase-Dyson skew information

$$
\begin{equation*}
I_{\rho, \alpha}(H) \equiv \frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H_{0}\right]\right)\left(i\left[\rho^{1-\alpha}, H_{0}\right]\right)\right] \tag{2.5}
\end{equation*}
$$

and we also define

$$
J_{\rho, \alpha}(H) \equiv \frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H_{0}\right\}\left\{\rho^{1-\alpha}, H_{0}\right\}\right],
$$

where $H_{0} \equiv H-\operatorname{Tr}[\rho H] I$ and we denote the anti-commutator by $\{X, Y\}=X Y+Y X$.
Note that we have

$$
\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H_{0}\right]\right)\left(i\left[\rho^{1-\alpha}, H_{0}\right]\right)\right]=\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H\right]\right)\left(i\left[\rho^{1-\alpha}, H\right]\right)\right]
$$

but we have

$$
\frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H_{0}\right\}\left\{\rho^{1-\alpha}, H_{0}\right\}\right] \neq \frac{1}{2} \operatorname{Tr}\left[\left\{\rho^{\alpha}, H\right\}\left\{\rho^{1-\alpha}, H\right\}\right]
$$

Then we have the following inequalities:

$$
\begin{equation*}
I_{\rho, \alpha}(H) \leqslant I_{\rho}(H) \leqslant J_{\rho}(H) \leqslant J_{\rho, \alpha}(H) \tag{2.6}
\end{equation*}
$$

since we have $\operatorname{Tr}\left[\rho^{1 / 2} H \rho^{1 / 2} H\right] \leqslant \operatorname{Tr}\left[\rho^{\alpha} H \rho^{1-\alpha} H\right]$. (See [1,2] for example.) If we define

$$
\begin{equation*}
U_{\rho, \alpha}(H) \equiv \sqrt{V_{\rho}(H)^{2}-\left(V_{\rho}(H)-I_{\rho, \alpha}(H)\right)^{2}}, \tag{2.7}
\end{equation*}
$$

as a direct generalization of Eq. (2.2), then we have

$$
\begin{equation*}
0 \leqslant I_{\rho, \alpha}(H) \leqslant U_{\rho, \alpha}(H) \leqslant U_{\rho}(H) \tag{2.8}
\end{equation*}
$$

due to the first inequality of (2.6). We also have

$$
\begin{equation*}
U_{\rho, \alpha}(H)=\sqrt{I_{\rho, \alpha}(H) J_{\rho, \alpha}(H)} \tag{2.9}
\end{equation*}
$$

Remark 2.2. From the inequalities (2.4), (2.6) and (2.8), our situation is that we have

$$
0 \leqslant I_{\rho, \alpha}(H) \leqslant I_{\rho}(H) \leqslant U_{\rho}(H)
$$

and

$$
0 \leqslant I_{\rho, \alpha}(H) \leqslant U_{\rho, \alpha}(H) \leqslant U_{\rho}(H) .
$$

Therefore our first concern is the ordering between $I_{\rho}(H)$ and $U_{\rho, \alpha}(H)$. However we have no ordering between them. Because we have the following examples. We set the density matrix ρ and the observable H such as

$$
\rho=\left(\begin{array}{cc}
0.6 & 0.48 \\
0.48 & 0.4
\end{array}\right), \quad H=\left(\begin{array}{cc}
1.0 & 0.5 \\
0.5 & 5.0
\end{array}\right)
$$

If $\alpha=0.1$, then $U_{\rho, \alpha}(H)-I_{\rho}(H)$ approximately takes -0.14736 . If $\alpha=0.2$, then $U_{\rho, \alpha}(H)-I_{\rho}(H)$ approximately takes 0.4451 .

Conjecture 2.3. Our second concern is to show an uncertainty relation with respect to $U_{\rho, \alpha}(H)$ as a direct generalization of the inequality (2.3) such that

$$
\begin{equation*}
U_{\rho, \alpha}(X) U_{\rho, \alpha}(Y) \geqslant \frac{1}{4}|\operatorname{Tr}[\rho[X, Y]]|^{2} \tag{2.10}
\end{equation*}
$$

However we have not found the proof of the above inequality (2.10). In addition, we have not found any counter-examples of the inequality (2.10) yet.

In the present paper, we introduce a generalized Wigner-Yanase skew information which is a generalization of the Wigner-Yanase skew information defined in Eq. (1.1), but different from the Wigner-Yanase-Dyson skew information defined in Eq. (2.5).

Definition 2.4. For $0 \leqslant \alpha \leqslant 1$, a quantum state ρ and an observable H, we define a generalized Wigner-Yanase skew information by

$$
K_{\rho, \alpha}(H) \equiv \frac{1}{2} \operatorname{Tr}\left[\left(i\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, H_{0}\right]\right)^{2}\right]
$$

and we also define

$$
L_{\rho, \alpha}(H) \equiv \frac{1}{2} \operatorname{Tr}\left[\left(\left\{\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, H_{0}\right\}\right)^{2}\right]
$$

Remark 2.5. For two generalized Wigner-Yanase skew informations $I_{\rho, \alpha}(H)$ and $K_{\rho, \alpha}(H)$, we have the relation:

$$
I_{\rho, \alpha}(H) \leqslant K_{\rho, \alpha}(H)
$$

Indeed, for a spectral decomposition of ρ such as $\rho=\sum_{k} \lambda_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|$, we have the following expressions:

$$
\left.I_{\rho, \alpha}(H)=\frac{1}{2} \sum_{m, n}\left(\lambda_{m}^{\alpha}-\lambda_{n}^{\alpha}\right)\left(\lambda_{m}^{1-\alpha}-\lambda_{n}^{1-\alpha}\right)\left|\left\langle\phi_{m}\right| H\right| \phi_{n}\right\rangle\left.\right|^{2}
$$

and

$$
\left.K_{\rho, \alpha}(H)=\frac{1}{2} \sum_{m, n}\left(\frac{\lambda_{m}^{\alpha}-\lambda_{n}^{\alpha}+\lambda_{m}^{1-\alpha}-\lambda_{n}^{1-\alpha}}{2}\right)^{2}\left|\left\langle\phi_{m}\right| H\right| \phi_{n}\right\rangle\left.\right|^{2} .
$$

By simple calculations, we see

$$
\left(\frac{\lambda_{m}^{\alpha}-\lambda_{n}^{\alpha}+\lambda_{m}^{1-\alpha}-\lambda_{n}^{1-\alpha}}{2}\right)^{2}-\left(\lambda_{m}^{\alpha}-\lambda_{n}^{\alpha}\right)\left(\lambda_{m}^{1-\alpha}-\lambda_{n}^{1-\alpha}\right) \geqslant 0 .
$$

Throughout this section, we put $X_{0} \equiv X-\operatorname{Tr}[\rho X] I$ and $Y_{0} \equiv Y-\operatorname{Tr}[\rho Y] I$. Then we show the following trace inequality.
Theorem 2.6. For a quantum state ρ and observables X, Y and $\alpha \in[0,1]$, we have

$$
\begin{equation*}
W_{\rho, \alpha}(X) W_{\rho, \alpha}(Y) \geqslant \frac{1}{4}\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2} \tag{2.11}
\end{equation*}
$$

where

$$
W_{\rho, \alpha}(X) \equiv \sqrt{K_{\rho, \alpha}(X) L_{\rho, \alpha}(X)}
$$

Proof. Putting

$$
\begin{equation*}
M \equiv i\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, X_{0}\right] x+\left\{\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, Y_{0}\right\} \tag{2.12}
\end{equation*}
$$

for any $x \in \mathbb{R}$, then we have

$$
\begin{aligned}
0 \leqslant \operatorname{Tr}\left[M^{*} M\right]= & \left(\frac{1}{4} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, X_{0}\right]\right)^{2}+\left(i\left[\rho^{1-\alpha}, X_{0}\right]\right)^{2}\right]+I_{\rho, \alpha}(X)\right) x^{2} \\
& +\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, X_{0}\right]+i\left[\rho^{1-\alpha}, X_{0}\right]\right)\left(\left\{\rho^{\alpha}, Y_{0}\right\}+\left\{\rho^{1-\alpha}, Y_{0}\right\}\right)\right] x \\
& +\left(\frac{1}{4} \operatorname{Tr}\left[\left\{\rho^{\alpha}, Y_{0}\right\}^{2}+\left\{\rho^{1-\alpha}, Y_{0}\right\}^{2}\right]+J_{\rho, \alpha}(Y)\right)
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\frac{1}{4}\left|\operatorname{Tr}\left[\left(\rho^{\alpha}+\rho^{1-\alpha}\right)^{2}(i[X, Y])\right]\right|^{2} \leqslant & 4\left(\frac{1}{4} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, X_{0}\right]\right)^{2}+\left(i\left[\rho^{1-\alpha}, X_{0}\right]\right)^{2}\right]+I_{\rho, \alpha}(X)\right) \\
& \times\left(\frac{1}{4} \operatorname{Tr}\left[\left\{\rho^{\alpha}, Y_{0}\right\}^{2}+\left\{\rho^{1-\alpha}, Y_{0}\right\}^{2}\right]+J_{\rho, \alpha}(Y)\right)
\end{aligned}
$$

since we have

$$
\operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, X_{0}\right]+i\left[\rho^{1-\alpha}, X_{0}\right]\right)\left(\left\{\rho^{\alpha}, Y_{0}\right\}+\left\{\rho^{1-\alpha}, Y_{0}\right\}\right)\right]=\operatorname{Tr}\left[\left(\rho^{\alpha}+\rho^{1-\alpha}\right)^{2}(i[X, Y])\right]
$$

As similar as we have

$$
\begin{aligned}
\frac{1}{4}\left|\operatorname{Tr}\left[\left(\rho^{\alpha}+\rho^{1-\alpha}\right)^{2}(i[X, Y])\right]\right|^{2} \leqslant & 4\left(\frac{1}{4} \operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, Y_{0}\right]\right)^{2}+\left(i\left[\rho^{1-\alpha}, Y_{0}\right]\right)^{2}\right]+I_{\rho, \alpha}(Y)\right) \\
& \times\left(\frac{1}{4} \operatorname{Tr}\left[\left\{\rho^{\alpha}, X_{0}\right\}^{2}+\left\{\rho^{1-\alpha}, X_{0}\right\}^{2}\right]+J_{\rho, \alpha}(X)\right)
\end{aligned}
$$

By the above two inequalities, we have

$$
W_{\rho, \alpha}(X) W_{\rho, \alpha}(Y) \geqslant \frac{1}{4}\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2}
$$

Corollary 2.7. For a quantum state ρ and observables (possibly unbounded operators) X, Y and $\alpha \in[0,1]$, if we have the relation $[X, Y]=\frac{1}{2 \pi i} I$ on $\operatorname{dom}(X Y) \cap \operatorname{dom}(Y X)$ and ρ is expressed by $\rho=\sum_{k} \lambda_{k}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right|,\left|\phi_{k}\right\rangle \in \operatorname{dom}(X Y) \cap \operatorname{dom}(Y X)$, then

$$
W_{\rho, \alpha}(X) W_{\rho, \alpha}(Y) \geqslant \frac{1}{4}|\operatorname{Tr}[\rho[X, Y]]|^{2}
$$

Proof. It follows from Theorem 2.6 and the following inequality:

$$
\frac{1}{4}\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2} \geqslant \frac{1}{4}|\operatorname{Tr}[\rho[X, Y]]|^{2},
$$

whenever we have the canonical commutation relation such as $[X, Y]=\frac{1}{2 \pi i} I$.

Remark 2.8. Theorem 2.6 is not trivial one in the sense of the following (i) and (ii).
(i) Since the arithmetic mean is greater than the geometric mean, $\operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, X_{0}\right]\right)^{2}\right] \geqslant 0$ and $\operatorname{Tr}\left[\left(i\left[\rho^{1-\alpha}, X_{0}\right]\right)^{2}\right] \geqslant 0$ imply $K_{\rho, \alpha}(X) \geqslant I_{\rho, \alpha}(X)$, by the use of Schwarz's inequality. Similarly, $\operatorname{Tr}\left[\left\{\rho^{\alpha}, Y_{0}\right\}^{2}\right] \geqslant 0$ and $\operatorname{Tr}\left[\left\{\rho^{1-\alpha}, Y_{0}\right\}^{2}\right] \geqslant 0$ imply $L_{\rho, \alpha}(Y) \geqslant$ $J_{\rho, \alpha}(Y)$. We then have $W_{\rho, \alpha}(X) \geqslant U_{\rho, \alpha}(X)$.

From the inequality (2.8) and the above, our situation is that we have

$$
U_{\rho, \alpha}(H) \leqslant U_{\rho}(H)
$$

and

$$
U_{\rho, \alpha}(H) \leqslant W_{\rho, \alpha}(H)
$$

Our third concern is the ordering between $U_{\rho}(H)$ and $W_{\rho, \alpha}(H)$. However, we have no ordering between them. Because we have the following examples. We set

$$
\rho=\left(\begin{array}{ll}
0.8 & 0.0 \\
0.0 & 0.2
\end{array}\right), \quad H=\left(\begin{array}{cc}
2.0 & 3.0 \\
3.0 & 1.0
\end{array}\right) .
$$

If we take $\alpha=0.8$, then $U_{\rho}(H)-W_{\rho, \alpha}(H)$ approximately takes -0.0241367 . If we take $\alpha=0.9$, then $U_{\rho}(H)-W_{\rho, \alpha}(H)$ approximately takes 0.404141 . This example actually shows that there exists a triplet of α, ρ and H such that $W_{\rho, \alpha}(H)<$ $V_{\rho}(H)$, since we have $U_{\rho}(H) \leqslant V_{\rho}(H)$ in general.
(ii) We have no ordering between $\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2}$ and $|\operatorname{Tr}[\rho[X, Y]]|^{2}$, by the following examples. If we take

$$
\rho=\frac{1}{7}\left(\begin{array}{ccc}
2 & 2 i & 1 \\
-2 i & 3 & -2 i \\
1 & 2 i & 2
\end{array}\right), \quad X=\left(\begin{array}{ccc}
3 & 3 & -i \\
3 & 1 & 0 \\
i & 0 & 1
\end{array}\right), \quad Y=\left(\begin{array}{ccc}
1 & -i & 1-i \\
i & 1 & i \\
1+i & -i & 3
\end{array}\right),
$$

then we have

$$
\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2} \simeq 0.348097, \quad|\operatorname{Tr}[\rho[X, Y]]|^{2} \simeq 0.326531
$$

If we take

$$
\rho=\frac{1}{7}\left(\begin{array}{ccc}
2 & 2 i & 1 \\
-2 i & 3 & -2 i \\
1 & 2 i & 2
\end{array}\right), \quad X=\left(\begin{array}{ccc}
3 & 3 & -i \\
3 & 1 & 0 \\
i & 0 & 1
\end{array}\right), \quad Y=\left(\begin{array}{ccc}
1 & -i & 0 \\
i & 1 & i \\
0 & -i & 3
\end{array}\right),
$$

then we have

$$
\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2} \simeq 0.304377, \quad|\operatorname{Tr}[\rho[X, Y]]|^{2} \simeq 0.326531
$$

Remark 2.9.

(i) If we take $M=\rho^{1 / 2} X_{0} x+\rho^{1 / 2} Y_{0}$ for any $x \in \mathbb{R}$ presented in Eq. (2.12), we recover the Heisenberg's uncertainty relation (2.1) shown in [3].
(ii) If we take $\alpha=\frac{1}{2}$, then we recover the inequality (2.3) presented in [6].
(iii) We have another inequalities which are different from the inequality (2.11), by taking different self-adjoint operators M appeared in the proof of Theorem 2.6.

Conjecture 2.10. Our fourth concern is whether the following inequality:

$$
\begin{equation*}
U_{\rho, \alpha}(X) U_{\rho, \alpha}(Y) \geqslant \frac{1}{4}\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2} \tag{2.13}
\end{equation*}
$$

holds or not. However we have not found its proof and any counter-examples yet.
$K_{\rho, \alpha}(H)$ and $L_{\rho, \alpha}(H)$ are respectively rewritten by

$$
K_{\rho, \alpha}(H)=\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2} H_{0}^{2}-\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right) H_{0}\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right) H_{0}\right]
$$

and

$$
L_{\rho, \alpha}(H)=\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2} H_{0}^{2}+\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right) H_{0}\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right) H_{0}\right]
$$

Thus we have

$$
\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, H_{0}\right]\right)^{2}\right]=\frac{1}{2} \operatorname{Tr}\left[\left(i\left[\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, H\right]\right)^{2}\right]
$$

but we have

$$
\frac{1}{2} \operatorname{Tr}\left[\left(\left\{\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, H_{0}\right\}\right)^{2}\right] \neq \frac{1}{2} \operatorname{Tr}\left[\left(\left\{\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}, H\right\}\right)^{2}\right]
$$

In addition, we have $L_{\rho, \alpha}(H) \geqslant K_{\rho, \alpha}(H)$ which implies

$$
W_{\rho, \alpha}(H) \equiv \sqrt{K_{\rho, \alpha}(H) L_{\rho, \alpha}(H)} \geqslant \sqrt{K_{\rho, \alpha}(H) K_{\rho, \alpha}(H)} \geqslant K_{\rho, \alpha}(H)
$$

Therefore our fifth concern is whether the following inequality for $\alpha \in[0,1]$ holds or not:

$$
\begin{equation*}
K_{\rho, \alpha}(X) K_{\rho, \alpha}(Y) \geqslant \frac{1}{4}\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2} \tag{2.14}
\end{equation*}
$$

However this inequality fails, because we have a counter-example. If we set $\alpha=\frac{1}{2}$ and

$$
\rho=\frac{1}{4}\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right), \quad X=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then we have

$$
K_{\rho, \alpha}(X) K_{\rho, \alpha}(Y)=I_{\rho}(X) I_{\rho}(Y)=\left(\frac{1-\sqrt{3}}{2}\right)^{2}
$$

and

$$
\frac{1}{4}\left|\operatorname{Tr}\left[\left(\frac{\rho^{\alpha}+\rho^{1-\alpha}}{2}\right)^{2}[X, Y]\right]\right|^{2}=\frac{1}{4}|\operatorname{Tr}[\rho[X, Y]]|^{2}=\frac{1}{4}
$$

Thus the inequality (2.14) does not hold in general.
Before closing this section, we reconsider the ordering $W_{\rho, \alpha}(H)$ and $V_{\rho}(H)$, although we have already stated an example of the triplet α, ρ and H satisfying $W_{\rho, \alpha}(H)<V_{\rho}(H)$ in the last line of (i) of Remark 2.8. If we set $\alpha=\frac{1}{5}$ and

$$
\rho=\left(\begin{array}{cc}
0.3 & 0.45 \\
0.45 & 0.7
\end{array}\right), \quad H=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right)
$$

Then $V_{\rho}(H)-W_{\rho, \alpha}(H)$ approximately takes -0.3072 . If we set $\alpha=\frac{1}{5}$ and

$$
\rho=\left(\begin{array}{cc}
0.3 & 0.4 \\
0.4 & 0.7
\end{array}\right), \quad H=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right) .
$$

Then $V_{\rho}(H)-W_{\rho, \alpha}(H)$ approximately takes 0.682011 . Therefore we have no ordering between $W_{\rho, \alpha}(H)$ and $V_{\rho}(H)$. Thus it is natural for us to have an interest in the following conjecture, since we have $K_{\rho, \alpha}(H) \leqslant W_{\rho, \alpha}(H)$ in general.

Conjecture 2.11. Our final concern is whether the following inequality:

$$
\begin{equation*}
K_{\rho, \alpha}(H) \leqslant V_{\rho}(H), \quad \alpha \in[0,1], \tag{2.15}
\end{equation*}
$$

holds or not. However we have not found its proof and any counter-examples yet.

3. Concluding remarks

As we have seen, we introduced a generalized Wigner-Yanase skew information $K_{\rho, \alpha}(H)$ and then defined a new quantity $W_{\rho, \alpha}(H)$. We note that our generalized Wigner-Yanase skew information $K_{\rho, \alpha}(H)$ is different type of the Wigner-Yanase-Dyson skew information $I_{\rho, \alpha}(H)$. For the quantity $K_{\rho, \alpha}(H)$, we do not have a trace inequality related to an uncertainty relation. However, we showed that we have a trace inequality related to an uncertainty relation for the quantity $W_{\rho, \alpha}(H)$. This inequality is a non-trivial one-parameter extension of the uncertainty relation (2.3) shown by S. Luo in [6]. In addition, we studied several trace inequalities on informational quantities.

Finally, we give another generalized trace inequality of the inequality (2.3). For a quantum state ρ an observable H and $\alpha \in[0,1]$, we define

$$
Z_{\rho, \alpha}(H) \equiv \frac{1}{4} \sqrt{\operatorname{Tr}\left[\left(i\left[\rho^{\alpha}, H_{0}\right]\right)^{2}\right] \operatorname{Tr}\left[\left(i\left[\rho^{1-\alpha}, H_{0}\right]\right)^{2}\right] \operatorname{Tr}\left[\left\{\rho^{\alpha}, H_{0}\right\}^{2}\right] \operatorname{Tr}\left[\left\{\rho^{1-\alpha}, H_{0}\right\}^{2}\right]}
$$

with $H_{0} \equiv H-\operatorname{Tr}[\rho H] I$. Then we have the following inequality

$$
\begin{equation*}
\sqrt{Z_{\rho, \alpha}(X) Z_{\rho, \alpha}(Y)} \geqslant \frac{1}{4}\left|\operatorname{Tr}\left[\rho^{2 \alpha}[X, Y]\right] \operatorname{Tr}\left[\rho^{2(1-\alpha)}[X, Y]\right]\right|, \tag{3.1}
\end{equation*}
$$

for a quantum state ρ, two observables X, Y and $\alpha \in[0,1]$. We note that the inequality (3.1) recovers the inequality (2.3) by taking $\alpha=1 / 2$ and we do not have any weak-strong relation between the inequality (2.11) and the inequality (3.1).

References

[1] J.-C. Bourin, Some inequalities for norms on matrices and operators, Linear Algebra Appl. 292 (1999) 139-154.
[2] J.I. Fujii, A trace inequality arising from quantum information theory, Linear Algebra Appl. 400 (2005) 141-146.
[3] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43 (1927) 172-198.
[4] H. Kosaki, Matrix trace inequality related to uncertainty principle, Internat. J. Math. 16 (2005) 629-646.
[5] E.H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math. 11 (1973) 267-288.
[6] S. Luo, Heisenberg uncertainty relation for mixed states, Phys. Rev. A 72 (2005) 042110.
[7] S. Luo, Q. Zhang, On skew information, IEEE Trans. Inform. Theory 50 (2004) 1778-1782; and Correction to "On skew information", IEEE Trans. Inform. Theory 51 (2005) 4432.
[8] E.P. Wigner, M.M. Yanase, Information content of distribution, Proc. Natl. Acad. Sci. USA 49 (1963) 910-918.
[9] K. Yanagi, S. Furuichi, K. Kuriyama, A generalized skew information and uncertainty relation, IEEE Trans. Inform. Theory 51 (2005) $4401-4404$.

[^0]: * Corresponding author.

 E-mail addresses: furuichi@chs.nihon-u.ac.jp (S. Furuichi), yanagi@yamaguchi-u.ac.jp (K. Yanagi), kuriyama@yamaguchi-u.ac.jp (K. Kuriyama).
 1 Supported in part by the Japanese Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Encouragement of Young Scientists (B), 20740067 and Grant-in-Aid for Scientific Research (B), 18300003.
 2 Partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (B), 18300003.

