84,149 research outputs found
Global Hilbert Expansion for the Vlasov-Poisson-Boltzmann System
We study the Hilbert expansion for small Knudsen number for the
Vlasov-Boltzmann-Poisson system for an electron gas. The zeroth order term
takes the form of local Maxwellian: $ F_{0}(t,x,v)=\frac{\rho_{0}(t,x)}{(2\pi
\theta_{0}(t,x))^{3/2}} e^{-|v-u_{0}(t,x)|^{2}/2\theta_{0}(t,x)},\text{\
}\theta_{0}(t,x)=K\rho_{0}^{2/3}(t,x).t=0u_00\leq t\leq \varepsilon
^{-{1/2}\frac{2k-3}{2k-2}},\rho_{0}(t,x) u_{0}(t,x)\gamma=5/3$
Systematic {\it ab initio} study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires
It is found that all the zigzag chains except the nonmagnetic (NM) Ni and
antiferromagnetic (AF) Fe chains which form a twisted two-legger ladder, look
like a corner-sharing triangle ribbon, and have a lower total energy than the
corresponding linear chains. All the 3d transition metals in both linear and
zigzag structures have a stable or metastable ferromagnetic (FM) state. The
electronic spin-polarization at the Fermi level in the FM Sc, V, Mn, Fe, Co and
Ni linear chains is close to 90% or above. In the zigzag structure, the AF
state is more stable than the FM state only in the Cr chain. It is found that
the shape anisotropy energy may be comparable to the electronic one and always
prefers the axial magnetization in both the linear and zigzag structures. In
the zigzag chains, there is also a pronounced shape anisotropy in the plane
perpendicular to the chain axis. Remarkably, the axial magnetic anisotropy in
the FM Ni linear chain is gigantic, being ~12 meV/atom. Interestingly, there is
a spin-reorientation transition in the FM Fe and Co linear chains when the
chains are compressed or elongated. Large orbital magnetic moment is found in
the FM Fe, Co and Ni linear chains
Entanglement changing power of two-qubit unitary operations
We consider a two-qubit unitary operation along with arbitrary local unitary
operations acts on a two-qubit pure state, whose entanglement is C_0. We give
the conditions that the final state can be maximally entangled and be
non-entangled. When the final state can not be maximally entangled, we give the
maximal entanglement C_max it can reach. When the final state can not be
non-entangled, we give the minimal entanglement C_min it can reach. We think
C_max and C_min represent the entanglement changing power of two-qubit unitary
operations. According to this power we define an order of gates.Comment: 11 page
Three Kinds of Special Relativity via Inverse Wick Rotation
Since the special relativity can be viewed as the physics in an inverse Wick
rotation of 4-d Euclid space, which is at almost equal footing with the 4-d
Riemann/Lobachevski space, there should be important physics in the inverse
Wick rotation of 4-d Riemann/Lobachevski space. Thus, there are three kinds of
special relativity in de Sitter/Minkowski/anti-de Sitter space at almost equal
footing, respectively. There is an instanton tunnelling scenario in the
Riemann-de Sitter case that may explain why \La be positive and link with the
multiverse.Comment: 3 pages, no figures, to appear in Chin. Phys. Let
Snyder's Quantized Space-time and De Sitter Special Relativity
There is a one-to-one correspondence between Snyder's model in de Sitter
space of momenta and the \dS-invariant special relativity. This indicates that
physics at the Planck length and the scale should be
dual to each other and there is in-between gravity of local \dS-invariance
characterized by a dimensionless coupling constant .Comment: 8 page
Entanglement detection beyond the CCNR criterion for infinite-dimensions
In this paper, in terms of the relation between the state and the reduced
states of it, we obtain two inequalities which are valid for all separable
states in infinite-dimensional bipartite quantum systems. One of them provides
an entanglement criterion which is strictly stronger than the computable
cross-norm or realignment (CCNR) criterion.Comment: 11 page
Angular Momentum of a Brane-world Model
In this paper we discuss the properties of the general covariant angular
momentum of a five-dimensional brane-world model. Through calculating the total
angular momentum of this model, we are able to analyze the properties of the
total angular momentum in the inflationary RS model. We show that the
space-like components of the total angular momentum of are all zero while the
others are non-zero, which agrees with the results from ordinary RS model.Comment: 8 pages; accepted by Chinese Physics
- …