328 research outputs found

    RATIONAL EXPECTATIONS ESTIMATION OF GEORGIA SOYBEAN ACREAGE RESPONSE

    Get PDF
    The general method of moments procedure is used for estimating a soybean acreage response function assuming the producers hold rational expectations. Results indicate that soybean, corn, and wheat futures prices, lagged acreage, and government programs are significant factors for determining soybean plantings. Implications of the results are that crop acreage selection by Georgia producers is not very responsive to demand shocks. Thus, producers in other regions are more likely to absorb impacts from these shocks on crop acreage selection.Soybeans, GMM, Elasticities, Crop Production/Industries,

    CosmoDM and its application to Pan-STARRS data

    Full text link
    The Cosmology Data Management system (CosmoDM) is an automated and flexible data management system for the processing and calibration of data from optical photometric surveys. It is designed to run on supercomputers and to minimize disk I/O to enable scaling to very high throughput during periods of reprocessing. It serves as an early prototype for one element of the ground-based processing required by the Euclid mission and will also be employed in the preparation of ground based data needed in the eROSITA X-ray all sky survey mission. CosmoDM consists of two main pipelines. The first is the single-epoch or detrending pipeline, which is used to carry out the photometric and astrometric calibration of raw exposures. The second is the co- addition pipeline, which combines the data from individual exposures into deeper coadd images and science ready catalogs. A novel feature of CosmoDM is that it uses a modified stack of As- tromatic software which can read and write tile compressed images. Since 2011, CosmoDM has been used to process data from the DECam, the CFHT MegaCam and the Pan-STARRS cameras. In this paper we shall describe how processed Pan-STARRS data from CosmoDM has been used to optically confirm and measure photometric redshifts of Planck-based Sunyaev-Zeldovich effect selected cluster candidates.Comment: 11 pages, 4 figures. Proceedings of Precision Astronomy with Fully Depleted CCDs Workshop (2014). Accepted for publication in JINS

    Larger visual changes compress time: The inverted effect of asemantic visual features on interval time perception; 35316292

    Get PDF
    Time perception is fluid and affected by manipulations to visual inputs. Previous literature shows that changes to low-level visual properties alter time judgments at the millisecond-level. At longer intervals, in the span of seconds and minutes, high-level cognitive effects (e.g., emotions, memories) elicited by visual inputs affect time perception, but these effects are confounded with semantic information in these inputs, and are therefore challenging to measure and control. In this work, we investigate the effect of asemantic visual properties (pure visual features devoid of emotional or semantic value) on interval time perception. Our experiments were conducted with binary and production tasks in both conventional and head-mounted displays, testing the effects of four different visual features (spatial luminance contrast, temporal frequency, field of view, and visual complexity). Our results reveal a consistent pattern: larger visual changes all shorten perceived time in intervals of up to 3min, remarkably contrary to their effect on millisecond-level perception. Our findings may help alter participants'' time perception, which can have broad real-world implications

    Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy

    Get PDF
    3D functional imaging of neuronal activity in entire organisms at single cell level and physiologically relevant time scales faces major obstacles due to trade-offs between the size of the imaged volumes, and spatial and temporal resolution. Here, using light-field microscopy in combination with 3D deconvolution, we demonstrate intrinsically simultaneous volumetric functional imaging of neuronal population activity at single neuron resolution for an entire organism, the nematode Caenorhabditis elegans. The simplicity of our technique and possibility of the integration into epi-fluoresence microscopes makes it an attractive tool for high-speed volumetric calcium imaging.Comment: 25 pages, 7 figures, incl. supplementary informatio

    Birth, life and survival of Tidal Dwarf Galaxies

    Full text link
    Advances on the formation and survival of the so-called Tidal Dwarf Galaxies (TDGs) are reviewed. The understanding on how objects of the mass of dwarf galaxies may form in debris of galactic collisions has recently benefited from the coupling of multi-wavelength observations with numerical simulations of galaxy mergers. Nonetheless, no consensual scenario has yet emerged and as a matter of fact the very definition of TDGs remains elusive. Their real cosmological importance is also a matter of debate, their presence in our Local Group of galaxies as well. Identifying old, evolved, TDGs among the population of regular dwarf galaxies and satellites may not be straightforward. However a number of specific properties (location, dark matter and metal content) that objects of tidal origin should have are reminded here. Examples of newly discovered genuine old TDGs around a nearby elliptical galaxy are finally presented.Comment: 9 pages, 5 figures, invited talk at JENAM 2010 symposium on "Dwarf Galaxies", v2:reference and acknowledgements update

    IVINE - Ionization in the parallel tree/sph code VINE: First results on the observed age-spread around O-stars

    Get PDF
    We present a three-dimensional, fully parallelized, efficient implementation of ionizing ultraviolet (UV) radiation for smoothed particle hydrodynamics (sph) including self-gravity. Our method is based on the sph/tree code vine. We therefore call it iVINE (for Ionization + VINE). This approach allows detailed high-resolution studies of the effects of ionizing radiation from, for example, young massive stars on their turbulent parental molecular clouds. In this paper, we describe the concept and the numerical implementation of the radiative transfer for a plane-parallel geometry and we discuss several test cases demonstrating the efficiency and accuracy of the new method. As a first application, we study the radiatively driven implosion of marginally stable molecular clouds at various distances of a strong UV source and show that they are driven into gravitational collapse. The resulting cores are very compact and dense exactly as it is observed in clustered environments. Our simulations indicate that the time of triggered collapse depends on the distance of the core from the UV source. Clouds closer to the source collapse several 105 yr earlier than more distant clouds. This effect can explain the observed age spread in OB associations where stars closer to the source are found to be younger. We discuss possible uncertainties in the observational derivation of shock front velocities due to early stripping of protostellar envelopes by ionizing radiation

    Depth of Field Analysis for Multilayer Automultiscopic Displays

    Get PDF
    With the re-emergence of stereoscopic displays, through polarized glasses for theatrical presentations and shuttered liquid crystal eyewear in the home, automultiscopic displays have received increased attention. Commercial efforts have predominantly focused on parallax barrier and lenticular architectures applied to LCD panels. Such designs suffer from reduced resolution and brightness. Recently, multilayer LCDs have emerged as an alternative supporting full-resolution imagery with enhanced brightness and depth of field. We present a signal-processing framework for comparing the depth of field for conventional automultiscopic displays and emerging architectures comprising multiple light-attenuating layers. We derive upper bounds for the depths of field, indicating the potential of multilayer configurations to significantly enhance resolution and depth of field, relative to conventional designs.Massachusetts Institute of Technology. Media LaboratoryMIT Camera Culture GroupNational Science Foundation (U.S.) (Grant IIS-1116452)United States. Defense Advanced Research Projects Agency. MOSAIC ProgramUnited States. Defense Advanced Research Projects Agency. SCENICC ProgramAlfred P. Sloan Foundation (Research Fellowship)United States. Defense Advanced Research Projects Agency. (Young Faculty Award

    Simulating magnetic fields in the Antennae galaxies

    Full text link
    We present self-consistent high-resolution simulations of NGC4038/4039 (the "Antennae galaxies") including star formation, supernova feedback and magnetic fields performed with the N-body/SPH code Gadget, in which magnetohydrodynamics are followed with the SPH method. We vary the initial magnetic field in the progenitor disks from 1 nG to 100 muG. At the time of the best match with the central region of the Antennae system the magnetic field has been amplified by compression and shear flows to an equilibrium field of approximately 10 muG, independent of the initial seed field. These simulations are a proof of the principle that galaxy mergers are efficient drivers for the cosmic evolution of magnetic fields. We present a detailed analysis of the magnetic field structure in the central overlap region. Simulated radio and polarization maps are in good morphological and quantitative agreement with the observations. In particular, the two cores with the highest synchrotron intensity and ridges of regular magnetic fields between the cores and at the root of the southern tidal arm develop naturally in our simulations. This indicates that the simulations are capable of realistically following the evolution of the magnetic fields in a highly non-linear environment. We also discuss the relevance of the amplification effect for present day magnetic fields in the context of hierarchical structure formation.Comment: 18 pages, 14 figures, accepte
    • …
    corecore