373 research outputs found
Thoracic and Lumbar Vertebral Bone Mineral Density Changes in a Natural Occurring Dog Model of Diffuse Idiopathic Skeletal Hyperostosis
Ankylosing spinal disorders can be associated with alterations in vertebral bone mineral density (BMD). There is however controversy about vertebral BMD in patients wuse idiopathic skeletal hyperostosis (DISH). DISH in Boxer dogs has been considered a natural occurring disease model for DISH in people. The purpose of this study was to compare vertebral BMD between Boxers with and without DISH. Fifty-nine Boxers with (n=30) or without (n=29) DISH that underwent computed tomography were included. Vertebral BMD was calculated for each thoracic and lumbar vertebra by using an earlier reported and validated protocol. For each vertebral body, a region of interest was drawn on the axial computed tomographic images at three separate locations: immediately inferior to the superior end plate, in the middle of the vertebral body, and superior to the inferior end plate. Values from the three axial slices were averaged to give a mean Hounsfield Unit value for each vertebral body. Univariate statistical analysis was performed to identify factors to be included in a multivariate model. The multivariate model including all dogs demonstrated that vertebral DISH status (Coefficient 24.63; 95% CI 16.07 to 33.19; p <0.001), lumbar vertebrae (Coefficient -17.25; 95% CI -23.42 to -11.09; p < 0.01), and to a lesser extent higher age (Coefficient -0.56; 95% CI -1.07 to -0.05; p = 0.03) were significant predictors for vertebral BMD. When the multivariate model was repeated using only dogs with DISH, vertebral DISH status (Coefficient 20.67; 95% CI, 10.98 to 30.37; p < 0.001) and lumbar anatomical region (Coefficient -38.24; 95% CI, -47.75 to -28.73; p < 0.001) were again predictors for vertebral BMD but age was not. The results of this study indicate that DISH can be associated with decreased vertebral BMD. Further studies are necessary to evaluate the clinical importance and pathophysiology of this finding
Mixed configuration-interaction and many-body perturbation theory calculations of energies and oscillator strengths of J=1 odd states of neon
Ab-initio theory is developed for energies of J=1 particle-hole states of
neutral neon and for oscillator strengths of transitions from such states to
the J=0 ground state. Hole energies of low-Z neonlike ions are evaluated.Comment: 5 pages, 1 figure, 4 table
The helium atom in a strong magnetic field
We investigate the electronic structure of the helium atom in a magnetic
field b etween B=0 and B=100a.u. The atom is treated as a nonrelativistic
system with two interactin g electrons and a fixed nucleus. Scaling laws are
provided connecting the fixed-nucleus Hamiltonia n to the one for the case of
finite nuclear mass. Respecting the symmetries of the electronic Ham iltonian
in the presence of a magnetic field, we represent this Hamiltonian as a matrix
with res pect to a two-particle basis composed of one-particle states of a
Gaussian basis set. The corresponding generalized eigenvalue problem is solved
numerically, providing in the present paper results for vanish ing magnetic
quantum number M=0 and even or odd z-parity, each for both singlet and triplet
spin symmetry. Total electronic energies of the ground state and the first few
excitations in each su bspace as well as their one-electron ionization energies
are presented as a function of the magnetic fie ld, and their behaviour is
discussed. Energy values for electromagnetic transitions within the M=0 sub
space are shown, and a complete table of wavelengths at all the detected
stationary points with respect to their field dependence is given, thereby
providing a basis for a comparison with observed ab sorption spectra of
magnetic white dwarfs.Comment: 21 pages, 4 Figures, acc.f.publ.in J.Phys.
Carotid Revascularization and Its Effect on Cognitive Function: A Prospective Nonrandomized Multicenter Clinical Study
© 2020 The Author(s) Background: There is conflicting data on the effect of carotid revascularization on cognitive function. Objective: To examine cerebral blood flow and cognitive function after carotid revascularization. Methods: Patients with unilateral, asymptomatic hemodynamically significant carotid artery stenosis (80% by computed tomography angiography or magnetic resonance angiography) were eligible. Cerebral blood flow was measured preoperatively and 1 month postoperatively using quantitative phase contrast magnetic resonance angiography. Preoperative flow impairment was defined as ipsilateral flow at least 20% less than contralateral flow (ie, an ipsilateral and/or contralateral flow ratio â€0.8). Significant improvement in blood flow was defined as at least a 0.15 increase in flow ratio from pre- to postoperative. A control group was managed medically. Four cognitive domains were assessed at baseline, 1 month, and 6-12 months postoperatively. Results: Seventy-five patients were enrolled at 6 sites; 53 carotid endarterectomy, 11 carotid artery stenting, and 11 medical management only controls. Preoperative Trails B scores were similar between groups. Revascularization was associated with significant improvement in executive function (Trials B) while no improvement was observed in controls (P = .007). Of patients with improvement in middle cerebral artery (MCA) flow, 90% had improved Trails B scores compared to 46.5% of patients without MCA flow improvement (P = .01). Greater absolute improvement in mean Trails B scores was observed in patients with MCA flow improvement compared to those without (48 seconds versus 24.7 seconds, P = .001). Conclusions: In a cohort of patient with asymptomatic carotid stenosis, improvement in MCA flow following carotid revascularization is associated with improvement in executive functioning
Isotope shift in the electron affinity of chlorine
The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl
has been determined by tunable laser photodetachment spectroscopy to be
-0.51(14) GHz. The isotope shift was observed as a difference in the onset of
the photodetachment process for the two isotopes. In addition, the electron
affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2
improvement in the accuracy over earlier measurements. Many-body calculations
including lowest-order correlation effects demonstrates the sensitivity of the
specific mass shift and show that the inclusion of higher-order correlation
effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat
- âŠ