17 research outputs found

    Multicenter flow cytometry proficiency testing of canine blood and lymph node samples

    Get PDF
    Background: Flow cytometry (FC) is used increasingly in veterinary medicine for further characterization of hematolymphoid cells. Guidelines for optimizing assay performance and interpretation of results are limited, and concordance of results across laboratories is unknown. Objectives: This study aimed to determine inter-investigator agreement on the interpretation of FC results from split samples analyzed in different laboratories using various protocols, cytometers, and software; and on the interpretation of archived FC standard (FCS) data files contributed by the different investigators. Methods: This was a multicenter observational cross-sectional study. Anticoagulated blood or lymph node aspirate samples from nine client-owned dogs were aliquoted and shipped to participating laboratories. Samples were analyzed with individual laboratory-developed protocols. In addition, FCS files from a set of separate samples from 11 client-owned dogs were analyzed by participating investigators. A person not associated with the study tabulated the results and interpretations. Agreement of interpretations was assessed with Fleiss\u2019 kappa statistic. Results: Prolonged transit times affected sample quality for some laboratories. Overall agreement among investigators regarding the FC sample interpretation was strong (\u3ba = 0.86 \ub1 0.19, P <.001), and for specific categories, ranged from moderate to perfect. Agreement of the lymphoproliferation or other leukocyte sample category from the analysis of the FCS files was weak (\u3ba = 0.58 \ub1 0.05, P <.001). Conclusions: Lymphoproliferations were readily identified by FC, but identification of the categories of hematolymphoid neoplasia in fresh samples or archived files was variable. There is a need for a more standardized approach to maximize the enormous potential of FC in veterinary medicine

    Simulation optimization using the cross-entropy method with optimal computing budget allocation

    No full text
    ACM Transactions on Modeling and Computer Simulation201-ATMC

    Game-­theoretic Resource Allocation with Real-­time Probabilistic Surveillance Information

    Get PDF
    Abstract. Game-theoretic security resource allocation problems have generated significant interest in the area of designing and developing security systems. These approaches traditionally utilize the Stackelberg game model for security resource scheduling in order to improve the pro-tection of critical assets. The basic assumption in Stackelberg games is that a defender will act first, then an attacker will choose their best response after observing the defender’s strategy commitment (e.g., pro-tecting a specific asset). Thus, it requires an attacker’s full or partial observation of a defender’s strategy. This assumption is unrealistic in real-time threat recognition and prevention. In this paper, we propose a new solution concept (i.e., a method to predict how a game will be played) for deriving the defender’s optimal strategy based on the princi-ple of acceptable costs of minimax regret. Moreover, we demonstrate the advantages of this solution concept by analyzing its properties.
    corecore