39,010 research outputs found
Electroconvection in a Suspended Fluid Film: A Linear Stability Analysis
A suspended fluid film with two free surfaces convects when a sufficiently
large voltage is applied across it. We present a linear stability analysis for
this system. The forces driving convection are due to the interaction of the
applied electric field with space charge which develops near the free surfaces.
Our analysis is similar to that for the two-dimensional B\'enard problem, but
with important differences due to coupling between the charge distribution and
the field. We find the neutral stability boundary of a dimensionless control
parameter as a function of the dimensionless wave number .
, which is proportional to the square of the applied voltage, is
analogous to the Rayleigh number. The critical values and
are found from the minimum of the stability boundary, and its
curvature at the minimum gives the correlation length . The
characteristic time scale , which depends on a second dimensionless
parameter , analogous to the Prandtl number, is determined from the
linear growth rate near onset. and are coefficients in the
Ginzburg-Landau amplitude equation which describes the flow pattern near onset
in this system. We compare our results to recent experiments.Comment: 36 pages, 7 included eps figures, submitted to Phys Rev E. For more
info, see http://mobydick.physics.utoronto.ca
Network simulation using the simulation language for alternate modeling (SLAM 2)
The simulation language for alternate modeling (SLAM 2) is a general purpose language that combines network, discrete event, and continuous modeling capabilities in a single language system. The efficacy of the system's network modeling is examined and discussed. Examples are given of the symbolism that is used, and an example problem and model are derived. The results are discussed in terms of the ease of programming, special features, and system limitations. The system offers many features which allow rapid model development and provides an informative standardized output. The system also has limitations which may cause undetected errors and misleading reports unless the user is aware of these programming characteristics
Maintaining a Wormhole with a Scalar Field
It is well known that it takes matter that violates the averaged weak energy
condition to hold the throat of a wormhole open. The production of such
``exotic'' matter is usually discussed within the context of quantum field
theory. In this paper I show that it is possible to produce the exotic matter
required to hold a wormhole open classically. This is accomplished by coupling
a scalar field to matter that satisfies the weak energy condition. The
energy-momentum tensor of the scalar field and the matter separately satisfy
the weak energy condition, but there exists an interaction energy-momentum
tensor that does not. It is this interaction energy-momentum tensor that allows
the wormhole to be maintained.Comment: 12 pages, LaTe
Weakly Nonlinear Analysis of Electroconvection in a Suspended Fluid Film
It has been experimentally observed that weakly conducting suspended films of
smectic liquid crystals undergo electroconvection when subjected to a large
enough potential difference. The resulting counter-rotating vortices form a
very simple convection pattern and exhibit a variety of interesting nonlinear
effects. The linear stability problem for this system has recently been solved.
The convection mechanism, which involves charge separation at the free surfaces
of the film, is applicable to any sufficiently two-dimensional fluid. In this
paper, we derive an amplitude equation which describes the weakly nonlinear
regime, by starting from the basic electrohydrodynamic equations. This regime
has been the subject of several recent experimental studies. The lowest order
amplitude equation we derive is of the Ginzburg-Landau form, and describes a
forward bifurcation as is observed experimentally. The coefficients of the
amplitude equation are calculated and compared with the values independently
deduced from the linear stability calculation.Comment: 26 pages, 2 included eps figures, submitted to Phys Rev E. For more
information, see http://mobydick.physics.utoronto.c
Annular electroconvection with shear
We report experiments on convection driven by a radial electrical force in
suspended annular smectic A liquid crystal films. In the absence of an
externally imposed azimuthal shear, a stationary one-dimensional (1D) pattern
consisting of symmetric vortex pairs is formed via a supercritical transition
at the onset of convection. Shearing reduces the symmetries of the base state
and produces a traveling 1D pattern whose basic periodic unit is a pair of
asymmetric vortices. For a sufficiently large shear, the primary bifurcation
changes from supercritical to subcritical. We describe measurements of the
resulting hysteresis as a function of the shear at radius ratio . This simple pattern forming system has an unusual combination of
symmetries and control parameters and should be amenable to quantitative
theoretical analysis.Comment: 12 preprint pages, 3 figures in 2 parts each. For more info, see
http://mobydick.physics.utoronto.c
The design of an Fe-12Mn-O.2Ti alloy steel for low temperature use
An investigation was made to improve the low temperature mechanical properties of Fe-8 approximately 12% Mn-O 2Ti alloy steels. A two-phase(alpha + gamma) tempering in combination with cold working or hot working was identified as an effective treatment. A potential application as a Ni-free cryogenic steel was shown for this alloy. It was also shown that an Fe-8Mn steel could be grain-refined by a purely thermal treatment because of its dislocated martensitic structure and absence of epsilon phase. A significant reduction of the ductile-brittle transition temperature was obtained in this alloy. The nature and origin of brittle fracture in Fe-Mn alloys were also investigated. Two embrittling regions were found in a cooling curve of an Fe-12Mn-O 2Ti steel which was shown to be responsible for intergranular fracture. Auger electron spectroscopy identified no segregation during solution-annealing treatment. Avoiding the embrittling zones by controlled cooling led to a high cryogenic toughness in a solution-annealed condition
Assessment of Variable-cycle Engines for Mach 2.7 Supersonic Transports
Three proposed SCAR propulsion systems in terms of aircraft range for a fixed payload and take-off gross weight with a design cruise Mach number 2.7 are evaluated. The effects of various noise and operational restraints are determined and sensitivities to some of the more important performance variables are presented for the most probable design noise and operational restraint case. Critical areas requiring new or improved technology for each cycle are delineated
- …