259 research outputs found
Critical velocities and in general theory of relativity
We consider a few thought experiments of radial motion of massive particles
in the gravitational fields outside and inside various celestial bodies: Earth,
Sun, black hole. All other interactions except gravity are disregarded. For the
outside motion there exists a critical value of coordinate velocity : particles with are accelerated by the
field, like Newtonian apples, particles with are
decelerated like photons. Particles moving inside a body with constant density
have no critical velocity; they are always accelerated. We consider also the
motion of a ball inside a tower, when it is thrown from the top (bottom) of the
tower and after classically bouncing at the bottom (top) comes back to the
original point. The total time of flight is the same in these two cases if the
initial proper velocity is equal to .Comment: 13 page
Solar Gamma Rays Powered by Secluded Dark Matter
Secluded dark matter models, in which WIMPs annihilate first into metastable
mediators, can present novel indirect detection signatures in the form of gamma
rays and fluxes of charged particles arriving from directions correlated with
the centers of large astrophysical bodies within the solar system, such as the
Sun and larger planets. This naturally occurs if the mean free path of the
mediator is in excess of the solar (or planetary) radius. We show that existing
constraints from water Cerenkov detectors already provide a novel probe of the
parameter space of these models, complementary to other sources, with
significant scope for future improvement from high angular resolution gamma-ray
telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator
decays are also capable of contributing a significant solar system component to
the spectrum of energetic electrons and positrons, a possibility which can be
tested with the directional and timing information of PAMELA and Fermi.Comment: 22 pages, 3 figure
Suppression of decay channels in the Georgi-Machacek model
The decay mode is usually considered as one of the most promising
ways to discover new heavy neutral scalar . We show that in the
Georgi-Machacek model it is possible to get large enhancement of double SM-like
Higgs boson production due to decays while and decay channels
could be highly suppressed.Comment: 5 page
Neutrino Physics with Dark Matter Experiments and the Signature of New Baryonic Neutral Currents
New neutrino states \nu_b, sterile under the Standard Model interactions, can
be coupled to baryons via the isoscalar vector currents that are much stronger
than the Standard Model weak interactions. If some fraction of solar neutrinos
oscillate into \nu_b on their way to Earth, the coherently enhanced elastic
\nu_b-nucleus scattering can generate a strong signal in the dark matter
detectors. For the interaction strength a few hundred times stronger than the
weak force, the elastic \nu_b-nucleus scattering via new baryonic currents may
account for the existing anomalies in the direct detection dark matter
experiments at low recoil. We point out that for solar neutrino energies the
baryon-current-induced inelastic scattering is suppressed, so that the possible
enhancement of new force is not in conflict with signals at dedicated neutrino
detectors. We check this explicitly by calculating the \nu_b-induced deuteron
breakup, and the excitation of 4.4 MeV \gamma-line in ^{12}C.
Stronger-than-weak force coupled to baryonic current implies the existence of
new abelian gauge group U(1)_B with a relatively light gauge boson.Comment: 20 pages, 5 figures. References added, inconsistent treatment of
neutrino oscillations corrected, conclusions unchange
New Physics at 1 TeV?
If decays of a heavy particle S are responsible for the diphoton excess with
invariant mass 750 GeV observed at the 13 TeV LHC run, it can be easily
accomodated in the Standard Model. Two scenarios are considered: production in
gluon fusion through a loop of heavy isosinglet quark(s) and production in
photon fusion through a loop of heavy isosinglet leptons. In the second case
many heavy leptons are needed or/and they should have large electric charges in
order to reproduce experimental data on .Comment: 7 pages, 4 figures, 1 tabl
Extending the Higgs sector: an extra singlet
An extension of the Standard Model with an additional Higgs singlet is
analyzed. Bounds on singlet admixture in 125 GeV h boson from electroweak
radiative corrections and data on h production and decays are obtained.
Possibility of double h production enhancement at 14 TeV LHC due to heavy higgs
contribution is considered.Comment: 18 pages, 7 figures. v2: one equation added; references received
after the publication of v1 are adde
Charmed penguin versus BAU
Since the Standard Model most probably cannot explain the large value of CP
asymmetries recently observed in D-meson decays we propose the fourth
quark-lepton generation explanation of it. As a byproduct weakly mixed leptons
of the fourth generation make it possible to save the baryon number of the
Universe from erasure by sphalerons. An impact of the 4th generation on BBN is
briefly discussed.Comment: 13 pages, 3 figures, version to be published in JETP Letter
- …