258 research outputs found

    Critical velocities c/3c/\sqrt 3 and c/2c/\sqrt 2 in general theory of relativity

    Full text link
    We consider a few thought experiments of radial motion of massive particles in the gravitational fields outside and inside various celestial bodies: Earth, Sun, black hole. All other interactions except gravity are disregarded. For the outside motion there exists a critical value of coordinate velocity vc=c/3{\rm v}_c = c/\sqrt 3: particles with v<vc{\rm v} < {\rm v}_c are accelerated by the field, like Newtonian apples, particles with v>vc{\rm v} > {\rm v}_c are decelerated like photons. Particles moving inside a body with constant density have no critical velocity; they are always accelerated. We consider also the motion of a ball inside a tower, when it is thrown from the top (bottom) of the tower and after classically bouncing at the bottom (top) comes back to the original point. The total time of flight is the same in these two cases if the initial proper velocity v0v_0 is equal to c/2c/\sqrt 2.Comment: 13 page

    Solar Gamma Rays Powered by Secluded Dark Matter

    Full text link
    Secluded dark matter models, in which WIMPs annihilate first into metastable mediators, can present novel indirect detection signatures in the form of gamma rays and fluxes of charged particles arriving from directions correlated with the centers of large astrophysical bodies within the solar system, such as the Sun and larger planets. This naturally occurs if the mean free path of the mediator is in excess of the solar (or planetary) radius. We show that existing constraints from water Cerenkov detectors already provide a novel probe of the parameter space of these models, complementary to other sources, with significant scope for future improvement from high angular resolution gamma-ray telescopes such as Fermi-LAT. Fluxes of charged particles produced in mediator decays are also capable of contributing a significant solar system component to the spectrum of energetic electrons and positrons, a possibility which can be tested with the directional and timing information of PAMELA and Fermi.Comment: 22 pages, 3 figure

    Suppression of H→VVH\to VV decay channels in the Georgi-Machacek model

    Get PDF
    The H→ZZH\to ZZ decay mode is usually considered as one of the most promising ways to discover new heavy neutral scalar HH. We show that in the Georgi-Machacek model it is possible to get large enhancement of double SM-like Higgs boson production due to HH decays while ZZZZ and WWWW decay channels could be highly suppressed.Comment: 5 page

    Neutrino Physics with Dark Matter Experiments and the Signature of New Baryonic Neutral Currents

    Full text link
    New neutrino states \nu_b, sterile under the Standard Model interactions, can be coupled to baryons via the isoscalar vector currents that are much stronger than the Standard Model weak interactions. If some fraction of solar neutrinos oscillate into \nu_b on their way to Earth, the coherently enhanced elastic \nu_b-nucleus scattering can generate a strong signal in the dark matter detectors. For the interaction strength a few hundred times stronger than the weak force, the elastic \nu_b-nucleus scattering via new baryonic currents may account for the existing anomalies in the direct detection dark matter experiments at low recoil. We point out that for solar neutrino energies the baryon-current-induced inelastic scattering is suppressed, so that the possible enhancement of new force is not in conflict with signals at dedicated neutrino detectors. We check this explicitly by calculating the \nu_b-induced deuteron breakup, and the excitation of 4.4 MeV \gamma-line in ^{12}C. Stronger-than-weak force coupled to baryonic current implies the existence of new abelian gauge group U(1)_B with a relatively light gauge boson.Comment: 20 pages, 5 figures. References added, inconsistent treatment of neutrino oscillations corrected, conclusions unchange

    New Physics at 1 TeV?

    Full text link
    If decays of a heavy particle S are responsible for the diphoton excess with invariant mass 750 GeV observed at the 13 TeV LHC run, it can be easily accomodated in the Standard Model. Two scenarios are considered: production in gluon fusion through a loop of heavy isosinglet quark(s) and production in photon fusion through a loop of heavy isosinglet leptons. In the second case many heavy leptons are needed or/and they should have large electric charges in order to reproduce experimental data on σ(pp→SX)⋅Br(S→γγ)\sigma(pp \to SX) \cdot \mathrm{Br}(S \to \gamma \gamma).Comment: 7 pages, 4 figures, 1 tabl

    Charmed penguin versus BAU

    Full text link
    Since the Standard Model most probably cannot explain the large value of CP asymmetries recently observed in D-meson decays we propose the fourth quark-lepton generation explanation of it. As a byproduct weakly mixed leptons of the fourth generation make it possible to save the baryon number of the Universe from erasure by sphalerons. An impact of the 4th generation on BBN is briefly discussed.Comment: 13 pages, 3 figures, version to be published in JETP Letter

    Extending the Higgs sector: an extra singlet

    Get PDF
    An extension of the Standard Model with an additional Higgs singlet is analyzed. Bounds on singlet admixture in 125 GeV h boson from electroweak radiative corrections and data on h production and decays are obtained. Possibility of double h production enhancement at 14 TeV LHC due to heavy higgs contribution is considered.Comment: 18 pages, 7 figures. v2: one equation added; references received after the publication of v1 are adde
    • …
    corecore