5 research outputs found

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    No full text
    We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses

    Erratum: Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk (Cell (2019) 178(1) (262), (S0092867419306798), (10.1016/j.cell.2019.06.016))

    No full text
    (Cell 175, 1679\u20131687.e1\u2013e7; November 29, 2018) It has come to our attention that in preparing the final version of this article, the authors inadvertently misspelled the last name of author Charlotte E. Teunissen as \u201cCharlotte E. Theunissen.\u201d This error has been corrected in the article online. In the Editorial Note (Cell 178, 262, June 27, 2019), the editors refer to the original version of the published manuscript. That version contained a misspelled name, and as that has now been corrected, we are updating the Editorial Note as well

    The Multiple Sclerosis Genomic Map: Role of peripheral immune cells and resident microglia in susceptibility

    No full text
    We assembled and analyzed genetic data of 47,351 multiple sclerosis (MS) subjects and 68,284 control subjects and establish a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 independent associations within the extended MHC. We used an ensemble of methods to prioritize up to 551 potentially associated MS susceptibility genes, that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we do find enrichment for MS genes in these brain - resident immune cells. Thus, while MS is most likely initially triggered by perturbation of peripheral immune responses the functional responses of microglia and other brain cells are also altered and may have a role in targeting an autoimmune process to the central nervous system. One Sentence Summary: We report a detailed genetic and genomic map of multiple sclerosis, and describe the role of putatively affected genes in the peripheral immune system and brain resident microglia

    Erratum: Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk (Cell (2018) 175 6 (1679-1687.e7) PII: S0092-8674(19)30679-8)

    No full text
    corecore