468 research outputs found

    Plasmon-pole approximation for semiconductor quantum wire electrons

    Full text link
    We develop the plasmon-pole approximation for an interacting electron gas confined in a semiconductor quantum wire. We argue that the plasmon-pole approximation becomes a more accurate approach in quantum wire systems than in higher dimensional systems because of severe phase-space restrictions on particle-hole excitations in one dimension. As examples, we use the plasmon-pole approximation to calculate the electron self-energy due to the Coulomb interaction and the hot-electron energy relaxation rate due to LO-phonon emission in GaAs quantum wires. We find that the plasmon-pole approximation works extremely well as compared with more complete many-body calculations.Comment: 16 pages, RevTex, figures included. Also available at http://www-cmg.physics.umd.edu/~lzheng

    The Patient’s and the Therapist’s Evaluation of Bridges of Different Materials and Age

    Get PDF
    The aim of this study was to find out patients\u27 satisfaction with their bridges made of different materials (metal-ceramics, Au/resin, Ag-Pd/resin). One hundred and sixty four patients were examined at the Dental School, University of Zagreb, Croatia. They assessed their bridges – the overall quality, aesthetics, speech, chewing and the health of the gingiva by the scale from 1–5. The same categories were also assessed by a trained prosthodontist. The majority of the patients was really satisfied and gave the highest grades (quality, aesthetics, speech, etc.) and therefore the results were skewed and asymmetrical towards the biggest scores (biggest grades). The best gingival health was evaluated by the group of patients with ceramic crowns and bridges (p < 0.05) and the worst by the patients with Ag-Pd bridges. Speech was scored higher for the lateral than for the frontal bridges. Patients evaluated the health of the tissue surrounding their bridges, overall quality of fixed prosthodontic appliance and aesthetics with significantly higher scores than the prosthodontist (p < 0.01). The results point at a difference between the patient’s and the therapist\u27s evaluations and to the patient\u27s insufficient care about the gingiva around the bridge abutments

    Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces

    Full text link
    Using a low-temperature conductive-tip atomic force microscope in cross-section geometry we have characterized the local transport properties of the metallic electron gas that forms at the interface between LaAlO3 and SrTiO3. At low temperature, we find that the carriers do not spread away from the interface but are confined within ~10 nm, just like at room temperature. Simulations taking into account both the large temperature and electric-field dependence of the permittivity of SrTiO3 predict a confinement over a few nm for sheet carrier densities larger than ~6 10^13 cm-2. We discuss the experimental and simulations results in terms of a multi-band carrier system. Remarkably, the Fermi wavelength estimated from Hall measurements is ~16 nm, indicating that the electron gas in on the verge of two-dimensionality.Comment: Accepted for publication in Physical Review Letter

    A few electrons per ion scenario for the B=0 metal-insulator transition in two dimensions

    Full text link
    We argue on the basis of experimental numbers that the B=0 metal-insulator transition in two dimensions, observed in Si-MOSFETs and in other two-dimensional systems, is likely to be due to a few strongly interacting electrons, which also interact strongly with the random positively ionized impurities. At the insulating side the electrons are all bound in pairs to the ions. On the metallic side free electrons exist which are scattered by ions dressed with electron-pairs and therefore alter the bare scattering potential of the ions. The physics at the metallic side of the transition is argued to be controlled by the classical to quantum transport cross-over leading to the observed non-monotonous dependence of the resistivity on temperature. This few electrons per ion scenario appears to be an experimentally realistic and testable scenario, which can also serve as a starting point for further theoretical analysis of the two-dimensional metal-insulator transition.Comment: 8 pages, revised version, minor change

    Enzyme amperometric sensor for the determination of cholinesterase inhibitors or activators

    Get PDF
    An enzyme amperometric sensor (EAS) based on immobilized cholinesterase (ChE) sensitive to ChE effectors (both specific and non-specific) is shown to be useful in enzyme immunoassay. For example, a mink autoimmune (Aleutian) disease can be diagnosed with the EAS when an antigen is labelled with a ChE inhibitor. When the ChE-containing membrane is modified by incorporation of the antigen to give an immunoenzyme EAS, this immunoassay can be performed on the basis of the steric shielding of the enzyme active sites with the immunocomplexes formed. © 1993

    Plasma dispersion of multisubband electron systems over liquid helium

    Full text link
    Density-density response functions are evaluated for nondegenerate multisubband electron systems in the random-phase approximation for arbitrary wave number and subband index. We consider both quasi-two-dimensional and quasi-one- dimensional systems for electrons confined to the surface of liquid helium. The dispersion relations of longitudinal intrasubband and transverse intersubband modes are calculated at low temperatures and for long wavelengths. We discuss the effects of screening and two-subband occupancy on the plasmon spectrum. The characteristic absorption edge of the intersubband modes is shifted relatively to the single-particle intersubband separation and the depolarization shift correction can be significant at high electron densities

    Intrasubband and Intersubband Electron Relaxation in Semiconductor Quantum Wire Structures

    Full text link
    We calculate the intersubband and intrasubband many-body inelastic Coulomb scattering rates due to electron-electron interaction in two-subband semiconductor quantum wire structures. We analyze our relaxation rates in terms of contributions from inter- and intrasubband charge-density excitations separately. We show that the intersubband (intrasubband) charge-density excitations are primarily responsible for intersubband (intrasubband) inelastic scattering. We identify the contributions to the inelastic scattering rate coming from the emission of the single-particle and the collective excitations individually. We obtain the lifetime of hot electrons injected in each subband as a function of the total charge density in the wire.Comment: Submitted to PRB. 20 pages, Latex file, and 7 postscript files with Figure

    Inelastic Coulomb scattering rates due to acoustic and optical plasmon modes in coupled quantum wires

    Full text link
    We report a theoretical study on the inelastic Coulomb scattering rate of an injected electron in two coupled quantum wires in quasi-one-dimensional doped semiconductors. Two peaks appear in the scattering spectrum due to the optical and the acoustic plasmon scattering in the system. We find that the scattering rate due to the optical plasmon mode is similar to that in a single wire but the acoustic plasmon scattering depends crucially on its dispersion relation at small qq. Furthermore, the effects of tunneling between the two wires are studied on the inelastic Coulomb scattering rate. We show that a weak tunneling can strongly affect the acoustic plasmon scattering.Comment: 6 Postscript figure

    Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing

    Full text link
    Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESA's Cosmic Vision Programme.Comment: 10 pages. White Paper submission to the ESA Exo-Planet Roadmap Advisory Team. See also "Inferring statistics of planet populations by means of automated microlensing searches" by M. Dominik et al. (arXiv:0808.0004
    • …
    corecore