1,101 research outputs found
Submerged membrane coagulation hybrid system as pretreatment to organic matter removal from seawater
In this study, a commonly used ferric chloride was utilised as coagulant for removing organic compounds from seawater. More than 57% of dissolved organic carbon (DOC) was removed at optimum dosage of 3 mg Fe+3/L. The coagulation by FeCl3 at optimum dosage could remove a majority (95%) of hydrophobic compounds. The results from Liquid Chromatography - Organic Carbon Detector showed that only <0.02 mg/L of hydrophobic compounds was found after coagulation. In addition, the modified fouling index decreased considerably from 15,848 s/L2 with raw seawater to 3,025 s/L 2 with seawater after coagulation. In-line coagulation coupled with submerged membrane system (ICSMS) was also trialled. It is observed that critical flux was increased from 20 L/m2·h in the conventional submerged membrane system to 55 L/m2 h in ICSMS. The ICSMS could remain the high DOC removal efficiency (more than 70%) at filtration rate of 20 L/m2 h when keeping the development of trans-membrane pressure was significant lower than that of conventional submerged membrane system. © IWA Publishing 2011
Effect of Photocatalysis on the Membrane Hybrid System for wastewater treatment
An integrated photocatalysismembrane hybrid system was investigated for wastewater treatment with the main focus on improving the cross flow microfiltration (MF) permeate flux. Photocatalysis with TiO2 (P25 Degussa) suspension as photocatalyst was applied both as pre-treatment and as inline treatment with MF. The TiO2 slurry was found to have significant effect in permeate flux for wastewater with lower dissolved organic carbon concentration. The MF flux decline due to TiO2 slurry cake on the membrane surface was minimized by allowing the TiO2 slurry to settle and by using only the supernatant for further treatment using the hybrid system. The investigation also included the study on the effect of photocatalytic reaction time and the slurry settling times on the MF permeate flux. The irradiation of ultraviolet on the MF surface in presence of TiO2 catalyst in suspension yielded in an increase in permeate flux
Effluent organic matter (EfOM) in wastewater: Constituents, effects, and treatment
Wastewater reuse is being increasingly emphasized as a strategy for conservation of limited resources of freshwater and as a mean of safeguarding the aquatic environment due to contaminants present in wastewater. Although secondary and tertiary treated wastewater is often discharged into surface waters, it cannot be reused without further treatment. One of the parameters of concern for human and environmental health is components of organic matter originating from wastewater treatment plant (WWTP) effluents. This effluent organic matter (EfOM) should be carefully characterized in order to find an optimum treatment method for water reuse. This review presents the components of EfOM present in WWTP effluents and various treatment methods that may be employed for reduction of EfOM. These processes include flocculation, adsorption, biofiltration, ion exchange, advanced oxidation process, and membrane technology. The removal efficiency is discussed in terms of removal of total organic carbon, endocrine-disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs), different polarity fractions (such as hydrophobic and hydrophilic), and molecular weight distribution of organic matter. Copyright © Taylor & Francis Group, LLC
Effect of flocculation and/or adsorption as pretreatment on the critical flux of crossflow microfiltration
This study aims at identifying the effect of pretreatment such as flocculation and/or adsorption on the performance of crossflow microfiltration (CFMF). CFMF performance was studied in terms of critical flux. The results indicated that: (1) flocculation alone as a pretreatment could effectively remove the large molecular weight organic matter from 30,000 to 60,000 Daltons; (2) flocculation, together with adsorption as a pretreatment to CFMF, could remove both large and small molecular weight organics; (3) flocculation as a pretreatment was significantly better than adsorption in improving the critical flux; (4) critical flux increased from 100 L/m2.h to 520 L/m2.h when flocculation-adsorption was applied. The critical flux in long-term experiments was the same as that of the short-term experiments. However, the critical flux slightly decreased (5%) in long-term experiments compared to short-term operation with flocculation and adsorption as a pretreatment. © 2005 Elsevier B.V. All rights reserved
Simultaneous removal of particles and dissolved organic matter in floating media filter for surface water treatment
This research investigated the performance of floating media filter in removing particles and dissolved organic matter from surface water. Pilot-scale study consists of floating plastic media pre-filter connected with either granular activated carbon (GAC) or sponge biological filter (BF) bed. In the floating plastic media filter, coagulation and flocculation processes using poly-aluminum chloride (PACl) as coagulant at an optimum dose of 8 mg/L helped removing particles from raw water. The floating media filter was operated a filtration rate of 11 m3/m2.h whereas those in GAC and BF units were maintained at 2 m3/m2.h. Continuous operation for over 120 days gave 98% and 99% average removal efficiencies of turbidity and UV254 in floating media filter in combination with GAC unit whereas and 78% and 52% removal efficiencies of turbidity and UV254 removal were obtained in floating media filter in combination with BF. The removal of dissolved organic carbon in GAC and BF units reduced chlorine demand for disinfection by 29% and 14%. It could also reduce the sum of trihalomethane (THMs) ratio from 1.1 to 0.1 and 0.5 respectively. © 2009 Desalination Publications
Ultraflitration of wastewater with pretreatment: evaluation of flux decline models
Three different mathematical models relating the flux decline were investigated to quantify the effects of pretreatment in a membrane filtration system. The models used are empirical flux decline model, series resistance flux decline model and modified series resistance flux decline model. A cross flow ultrafiltration unit was used to study flux decline and organic removal from synthetic wastewater. Flocculation and adsorption pretreatments were carried out with ferric chloride (FeCl3) and activated carbon of different doses. The three models could predict flux decline after different pretreatments and could be used as a pretreatment index to ultrafiltration. © 2008
Effect of pre-treatment on fouling propensity of feed as depicted by the modified fouling index (MFI) and cross-flow sampler-modified fouling index (CFS-MFI)
The effectiveness of different pretreatment on the fouling propensity of the feed was studied using synthetic wastewater. The fouling potential of the feed was characterized by the standard modified fouling index (MFI) and cross-flow sampler modified fouling index (CFS-MFI). In CFS-MFI, a cross-flow sampler was used to simulate the condition of a cross-flow filtration. The results indicated that the pretreatment such as flocculation with an optimum dose of 68 mg/l FeCl3 substantially reduced the fouling propensity of the feed. The standard MFI of flocculated wastewater was reduced by around 99% compared to that of the untreated wastewater. Similarly, the adsorption with powdered activated carbon (PAC) of 1 g/l reduced the standard MFI value to more than 99% compared to that of the untreated wastewater. The CFS-MFI values were lower than the standard MFI values for both treated and untreated wastewater, suggesting that the standard MFI was overestimated. The overestimation of the standard MFI compared to that of the CFS-MFI value was more than 99%. The effect of molecular weight distribution (MWD) of the foulants in the wastewater on the fouling propensity of the feed was investigated. The MWD was correlated with the MFI and CFS-MFI indices. It yielded useful insights in understanding the effect of MW on MFI and CFS-MFI and fouling propensity of the feed. © 2009 Elsevier B.V. All rights reserved
The degradtion of humic substance using continuous photocatalysis systems
Photocatalytic oxidation is an emerging technology in water and wastewater treatment. Photocatalysis often leads to complete degradation of organic pollutants without the need for chemicals. This study investigated the degradation of humic substances in water using photocatalysis systems coupled with physio-chemical processes such as adsorption and/or flocculation. Dissolved Organic Carbon (DOC) removal of PAC-TiO2 was improved by a factor of two to three times compared with TiO2 alone. Solid Phase Micro Extraction (SPME)/Gas Chromatograph (GC) flame ionisation detector (FID) was used to investigate intermediates of photocatalytic oxidation in a batch reactor with TiO2 alone and with powder activated carbon (PAC) with TiO2. GC peaks showed that PAC-TiO2 adsorbed some by-products which were photo-resistant and prevented the reverse reaction that occurred when TiO2 was used alone. The two other types of photocatalytic reactors used were the continuous photocatalytic reactor and recirculated photocatalytic reactor. The results show that the recirculated reactor had the highest efficiency in removing organic matter in a short photo-oxidation (detention) time of less than 10min. The use of PAC-TiO2 in recirculated continuous reactor resulted in 80% removal of organic matter even when it was operated for a short detention time and allowed the use of a smaller dose of TiO2
Lessons for a viable water recycling industry
The platform on which the Labour government came to power in Australia in November 2007 included a policy of setting a national wastewater recycling target of 30% by the year 2015. A similar target-based approach was followed by the solid waste recycling industry in Australia the policy of which focused on supply and did not adequately acknowledge the price competitiveness of the product and its demand. This paper highlights the lessons from the solid waste recycling industry and applies them to the water recycling sector. A sound water pricing regime that reflects the true costs of water and a competitive water industry is offered as a better policy alternative to setting recycling targets
- …
