43 research outputs found

    Clinical phenotype and functional characterization of CASQ2 mutations associated with Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: Four distinct mutations in the human cardiac calsequestrin gene (CASQ2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). The mechanisms leading to the clinical phenotype are still poorly understood because only 1 CASQ2 mutation has been characterized in vitro. METHODS AND RESULTS: We identified a homozygous 16-bp deletion at position 339 to 354 leading to a frame shift and a stop codon after 5aa (CASQ2(G112+5X)) in a child with stress-induced ventricular tachycardia and cardiac arrest. The same deletion was also identified in association with a novel point mutation (CASQ2(L167H)) in a highly symptomatic CPVT child who is the first CPVT patient carrier of compound heterozygous CASQ2 mutations. We characterized in vitro the properties of CASQ2 mutants: CASQ2(G112+5X) did not bind Ca2+, whereas CASQ2(L167H) had normal calcium-binding properties. When expressed in rat myocytes, both mutants decreased the sarcoplasmic reticulum Ca2+-storing capacity and reduced the amplitude of I(Ca)-induced Ca2+ transients and of spontaneous Ca2+ sparks in permeabilized myocytes. Exposure of myocytes to isoproterenol caused the development of delayed afterdepolarizations in CASQ2(G112+5X). CONCLUSIONS: CASQ2(L167H) and CASQ2(G112+5X) alter CASQ2 function in cardiac myocytes, which leads to reduction of active sarcoplasmic reticulum Ca2+ release and calcium content. In addition, CASQ2(G112+5X) displays altered calcium-binding properties and leads to delayed afterdepolarizations. We conclude that the 2 CASQ2 mutations identified in CPVT create distinct abnormalities that lead to abnormal intracellular calcium regulation, thus facilitating the development of tachyarrhythmias

    Calcium Handling in Human Induced Pluripotent Stem Cell Derived Cardiomyocytes

    Get PDF
    BACKGROUND: The ability to establish human induced pluripotent stem cells (hiPSCs) by reprogramming of adult fibroblasts and to coax their differentiation into cardiomyocytes opens unique opportunities for cardiovascular regenerative and personalized medicine. In the current study, we investigated the Ca(2+)-handling properties of hiPSCs derived-cardiomyocytes (hiPSC-CMs). METHODOLOGY/PRINCIPAL FINDINGS: RT-PCR and immunocytochemistry experiments identified the expression of key Ca(2+)-handling proteins. Detailed laser confocal Ca(2+) imaging demonstrated spontaneous whole-cell [Ca(2+)](i) transients. These transients required Ca(2+) influx via L-type Ca(2+) channels, as demonstrated by their elimination in the absence of extracellular Ca(2+) or by administration of the L-type Ca(2+) channel blocker nifedipine. The presence of a functional ryanodine receptor (RyR)-mediated sarcoplasmic reticulum (SR) Ca(2+) store, contributing to [Ca(2+)](i) transients, was established by application of caffeine (triggering a rapid increase in cytosolic Ca(2+)) and ryanodine (decreasing [Ca(2+)](i)). Similarly, the importance of Ca(2+) reuptake into the SR via the SR Ca(2+) ATPase (SERCA) pump was demonstrated by the inhibiting effect of its blocker (thapsigargin), which led to [Ca(2+)](i) transients elimination. Finally, the presence of an IP3-releasable Ca(2+) pool in hiPSC-CMs and its contribution to whole-cell [Ca(2+)](i) transients was demonstrated by the inhibitory effects induced by the IP3-receptor blocker 2-Aminoethoxydiphenyl borate (2-APB) and the phospholipase C inhibitor U73122. CONCLUSIONS/SIGNIFICANCE: Our study establishes the presence of a functional, SERCA-sequestering, RyR-mediated SR Ca(2+) store in hiPSC-CMs. Furthermore, it demonstrates the dependency of whole-cell [Ca(2+)](i) transients in hiPSC-CMs on both sarcolemmal Ca(2+) entry via L-type Ca(2+) channels and intracellular store Ca(2+) release

    Local Control of Excitation-Contraction Coupling in Human Embryonic Stem Cell-Derived Cardiomyocytes

    Get PDF
    We investigated the mechanisms of excitation-contraction (EC) coupling in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and fetal ventricular myocytes (hFVMs) using patch-clamp electrophysiology and confocal microscopy. We tested the hypothesis that Ca2+ influx via voltage-gated L-type Ca2+ channels activates Ca2+ release from the sarcoplasmic reticulum (SR) via a local control mechanism in hESC-CMs and hFVMs. Field-stimulated, whole-cell [Ca2+]i transients in hESC-CMs required Ca2+ entry through L-type Ca2+ channels, as evidenced by the elimination of such transients by either removal of extracellular Ca2+ or treatment with diltiazem, an L-type channel inhibitor. Ca2+ release from the SR also contributes to the [Ca2+]i transient in these cells, as evidenced by studies with drugs interfering with either SR Ca2+ release (i.e. ryanodine and caffeine) or reuptake (i.e. thapsigargin and cyclopiazonic acid). As in adult ventricular myocytes, membrane depolarization evoked large L-type Ca2+ currents (ICa) and corresponding whole-cell [Ca2+]i transients in hESC-CMs and hFVMs, and the amplitude of both ICa and the [Ca2+]i transients were finely graded by the magnitude of the depolarization. hESC-CMs exhibit a decreasing EC coupling gain with depolarization to more positive test potentials, “tail” [Ca2+]i transients upon repolarization from extremely positive test potentials, and co-localized ryanodine and sarcolemmal L-type Ca2+ channels, all findings that are consistent with the local control hypothesis. Finally, we recorded Ca2+ sparks in hESC-CMs and hFVMs. Collectively, these data support a model in which tight, local control of SR Ca2+ release by the ICa during EC coupling develops early in human cardiomyocytes

    Dynamic regulation of sarcoplasmic reticulum Ca(2+) content and release by luminal Ca(2+)-sensitive leak in rat ventricular myocytes.

    Get PDF
    In cardiac muscle, excitation-contraction (E-C) coupling is determined by the ability of the sarcoplasmic reticulum (SR) to store and release Ca(2+). It has been hypothesized that the Ca(2+) sequestration and release mechanisms might be functionally linked to optimize the E-C coupling process. To explore the relationships between the loading status of the SR and functional state of the Ca(2+) release mechanism, we examined the effects of changes in SR Ca(2+) content on spontaneous Ca(2+) sparks in saponin-permeabilized and patch-clamped rat ventricular myocytes. SR Ca(2+) content was manipulated by pharmacologically altering the capacities of either Ca(2+) uptake or leak. Ca(2+) sparks were recorded using a confocal microscope and Fluo-3 and were quantified considering missed events. SR Ca(2+) content was assessed by application of caffeine. Exposure of permeabilized cells to anti-phospholamban antibodies elevated the SR Ca(2+) content and increased the frequency of sparks. Suppression of the SR Ca(2+) pump by thapsigargin lowered [Ca(2+)](SR) and reduced the frequency of sparks. The ryanodine receptor (RyR) blockers tetracaine and Mg(2+) transiently suppressed the frequency of sparks. Upon washout of the drugs, sparking activity transiently overshot control levels. Low doses of caffeine transiently potentiated sparking activity upon application and transiently depressed the sparks upon removal. In patch-clamped cardiac myocytes, exposure to caffeine produced only a transient increase in the probability of sparks induced by depolarization. We interpret these results in terms of a novel dynamic control scheme for SR Ca(2+) cycling. A central element of this scheme is a luminal Ca(2+) sensor that links the functional activity of RyRs to the loading state of the SR, allowing cells to auto-regulate the size and functional state of their SR Ca(2+) pool. These results are important for understanding the regulation of intracellular Ca(2+) release and contractility in cardiac muscle

    Underlying mechanisms of symmetric calcium wave propagation in rat ventricular myocytes.

    Get PDF
    Calcium waves in heart cells are mediated by diffusion-coupled calcium-induced calcium release. The waves propagate in circular fashion. This is counterintuitive in view of the accepted ultrastructure of the cardiac myocyte. The density of calcium release sites in the transverse direction is four times higher than in the longitudinal direction. Simulations with release sites localized along Z-lines and isotropic diffusion yielded highly elliptical, nonphysiological waves. We hypothesized that subcellular organelles counteracted the higher release site density along the Z-lines by acting as transverse diffusion barriers and sites of active calcium uptake. We quantified the reduction of transverse diffusion by microinjecting cells with the nonreactive dye fluorescein. The ratio of the radial diffusion coefficient to the longitudinal coefficient was 0.39. Inhibition of mitochondrial uptake by rotenone accelerated the wave in the transverse direction. Simulations with release sites clustered at the Z-lines and a transverse diffusion coefficient 50% of the longitudinal coefficient generated waves of ellipticity 2/1 (major axis along the Z-line). Introducing additional release sites between the Z-lines at a density 20% of that on the Z-lines produced circular waves. The experiments and simulations support the presence of transverse diffusion barriers, additional uptake sites, and possibly intermediate release sites as well

    Abnormal Calcium Signalling and Sudden Cardiac Death Associated With Mutation of Calsequestrin.

    No full text
    Mutations in human cardiac calsequestrin (CASQ2), a high-capacity calcium-binding protein located in the sarcoplasmic reticulum (SR), have recently been linked to effort-induced ventricular arrhythmia and sudden death (catecholaminergic polymorphic ventricular tachycardia). However, the precise mechanisms through which these mutations affect SR function and lead to arrhythmia are presently unknown. In this study, we explored the effect of adenoviral-directed expression of a canine CASQ2 protein carrying the catecholaminergic polymorphic ventricular tachycardia-linked mutation D307H (CASQ2(D307H)) on Ca2+ signaling in adult rat myocytes. Total CASQ2 protein levels were consistently elevated approximately 4-fold in cells infected with adenoviruses expressing either wild-type CASQ2 (CASQ2(WT)) or CASQ2(D307H). Expression of CASQ2(D307H) reduced the Ca2+ storing capacity of the SR. In addition, the amplitude, duration, and rise time of macroscopic I(Ca)-induced Ca2+ transients and of spontaneous Ca2+ sparks were reduced significantly in myocytes expressing CASQ2(D307H). Myocytes expressing CASQ2(D307H) also displayed drastic disturbances of rhythmic oscillations in [Ca2+]i and membrane potential, with signs of delayed afterdepolarizations when undergoing periodic pacing and exposed to isoproterenol. Importantly, normal rhythmic activity was restored by loading the SR with the low-affinity Ca2+ buffer, citrate. Our data suggest that the arrhythmogenic CASQ2(D307H) mutation impairs SR Ca2+ storing and release functions and destabilizes the Ca2+-induced Ca2+ release mechanism by reducing the effective Ca2+ buffering inside the SR and/or by altering the responsiveness of the Ca2+ release channel complex to luminal Ca2+. These results establish at the cellular level the pathological link between CASQ2 mutations and the predisposition to adrenergically mediated arrhythmias observed in patients carrying CASQ2 defects

    Abnormal calcium signaling and sudden cardiac death associated with mutation of calsequestrin

    No full text
    Mutations in human cardiac calsequestrin (CASQ2), a high-capacity calcium-binding protein located in the sarcoplasmic reticulum (SR), have recently been linked to effort-induced ventricular arrhythmia and sudden death (catecholaminergic polymorphic ventricular tachycardia). However, the precise mechanisms through which these mutations affect SR function and lead to arrhythmia are presently unknown. In this study, we explored the effect of adenoviral-directed expression of a canine CASQ2 protein carrying the catecholaminergic polymorphic ventricular tachycardia-linked mutation D307H (CASQ2(D307H)) on Ca2+ signaling in adult rat myocytes. Total CASQ2 protein levels were consistently elevated approximately 4-fold in cells infected with adenoviruses expressing either wild-type CASQ2 (CASQ2(WT)) or CASQ2(D307H). Expression of CASQ2(D307H) reduced the Ca2+ storing capacity of the SR. In addition, the amplitude, duration, and rise time of macroscopic I(Ca)-induced Ca2+ transients and of spontaneous Ca2+ sparks were reduced significantly in myocytes expressing CASQ2(D307H). Myocytes expressing CASQ2(D307H) also displayed drastic disturbances of rhythmic oscillations in [Ca2+]i and membrane potential, with signs of delayed afterdepolarizations when undergoing periodic pacing and exposed to isoproterenol. Importantly, normal rhythmic activity was restored by loading the SR with the low-affinity Ca2+ buffer, citrate. Our data suggest that the arrhythmogenic CASQ2(D307H) mutation impairs SR Ca2+ storing and release functions and destabilizes the Ca2+-induced Ca2+ release mechanism by reducing the effective Ca2+ buffering inside the SR and/or by altering the responsiveness of the Ca2+ release channel complex to luminal Ca2+. These results establish at the cellular level the pathological link between CASQ2 mutations and the predisposition to adrenergically mediated arrhythmias observed in patients carrying CASQ2 defect

    Clinical phenotype and functional characterization of CASQ2 mutations associated with catecholaminergic polymorphic ventricular tachycardia

    No full text
    BACKGROUND: Four distinct mutations in the human cardiac calsequestrin gene (CASQ2) have been linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). The mechanisms leading to the clinical phenotype are still poorly understood because only 1 CASQ2 mutation has been characterized in vitro. METHODS AND RESULTS: We identified a homozygous 16-bp deletion at position 339 to 354 leading to a frame shift and a stop codon after 5aa (CASQ2(G112+5X)) in a child with stress-induced ventricular tachycardia and cardiac arrest. The same deletion was also identified in association with a novel point mutation (CASQ2(L167H)) in a highly symptomatic CPVT child who is the first CPVT patient carrier of compound heterozygous CASQ2 mutations. We characterized in vitro the properties of CASQ2 mutants: CASQ2(G112+5X) did not bind Ca2+, whereas CASQ2(L167H) had normal calcium-binding properties. When expressed in rat myocytes, both mutants decreased the sarcoplasmic reticulum Ca2+-storing capacity and reduced the amplitude of I(Ca)-induced Ca2+ transients and of spontaneous Ca2+ sparks in permeabilized myocytes. Exposure of myocytes to isoproterenol caused the development of delayed afterdepolarizations in CASQ2(G112+5X). CONCLUSIONS: CASQ2(L167H) and CASQ2(G112+5X) alter CASQ2 function in cardiac myocytes, which leads to reduction of active sarcoplasmic reticulum Ca2+ release and calcium content. In addition, CASQ2(G112+5X) displays altered calcium-binding properties and leads to delayed afterdepolarizations. We conclude that the 2 CASQ2 mutations identified in CPVT create distinct abnormalities that lead to abnormal intracellular calcium regulation, thus facilitating the development of tachyarrhythmia

    Abnormal Interactions of Calsequestrin With the Ryanodine Receptor Calcium Release Channel Complex Linked to Exercise-Induced Sudden Cardiac Death

    No full text
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca(2+)-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2(R33Q) in adult rat myocytes led to an increase in excitation-contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca(2+)-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia
    corecore