146 research outputs found

    Semileptonic form factors - a model-independent approach

    Get PDF
    We demonstrate that the B->D(*) l nu form factors can be accurately predicted given the slope parameter rho^2 of the Isgur-Wise function. Only weak assumptions, consistent with lattice results, on the wavefunction for the light degrees of freedom are required to establish this result. We observe that the QCD and 1/m_Q corrections can be systematically represented by an effective Isgur-Wise function of shifted slope. This greatly simplifies the analysis of semileptonic B decay. We also investigate what the available semileptonic data can tell us about lattice QCD and Heavy Quark Effective Theory. A rigorous identity relating the form factor slope difference rho_D^2-rho_A1^2 to a combination of form factor intercepts is found. The identity provides a means of checking theoretically evaluated intercepts with experiment.Comment: 18 pages, Revtex, 4 postscript figures, uses epsfig.st

    Decay constants of P and D-wave heavy-light mesons

    Full text link
    We investigate decay constants of P and D-wave heavy-light mesons within the mock-meson approach. Numerical estimates are obtained using the relativistic quark model. We also comment on recent calculations of heavy-light pseudo-scalar and vector decay constants.Comment: REVTeX, 22 pages, uses epsf macro, 8 postscript figures include

    The EPICS Software Framework Moves from Controls to Physics

    No full text
    The Experimental Physics and Industrial Control System (EPICS), is an open-source software framework for high-performance distributed control, and is at the heart of many of the world’s large accelerators and telescopes. Recently, EPICS has undergone a major revision, with the aim of better computing supporting for the next generation of machines and analytical tools. Many new data types, such as matrices, tables, images, and statistical descriptions, plus users’ own data types, now supplement the simple scalar and waveform types of the former EPICS. New computational architectures for scientific computing have been added for high-performance data processing services and pipelining. Python and Java bindings have enabled powerful new user interfaces. The result has been that controls are now being integrated with modelling and simulation, machine learning, enterprise databases, and experiment DAQs. We introduce this new EPICS (version 7) from the perspective of accelerator physics and review early adoption cases in accelerators around the world

    Potential Models for Radiative Rare B Decays

    Full text link
    We compute the branching ratios for the radiative rare decays of B into K-Meson states and compare them to the experimentally determined branching ratio for inclusive decay b -> s gamma using non relativistic quark model, and form factor definitions consistent with HQET covariant trace formalism. Such calculations necessarily involve a potential model. In order to test the sensitivity of calculations to potential models we have used three different potentials, namely linear potential, screening confining potential and heavy quark potential as it stands in QCD.We find the branching ratios relative to the inclusive b ->s gamma decay to be (16.07\pm 5.2)% for B -> K^* (892)gamma and (7.25\pm 3.2)% for B -> K_2^* (1430)gamma for linear potential. In the case of the screening confining potential these values are (19.75\pm 5.3)% and (4.74\pm 1.2)% while those for the heavy quark potential are (11.18\pm 4.6)% and (5.09\pm 2.7)% respectively. All these values are consistent with the corresponding present CLEO experimental values: (16.25\pm 1.21)% and (5.93\pm 0.46)%.Comment: RevTeX, 6 pages, 1 eps figur

    On the validity of the reduced Salpeter equation

    Get PDF
    We adapt a general method to solve both the full and reduced Salpeter equations and systematically explore the conditions under which these two equations give equivalent results in meson dynamics. The effects of constituent mass, angular momentum state, type of interaction, and the nature of confinement are all considered in an effort to clearly delineate the range of validity of the reduced Salpeter approximations. We find that for J̸=0J\not{\hspace*{-1.0mm}=}0 the solutions are strikingly similar for all constituent masses. For zero angular momentum states the full and reduced Salpeter equations give different results for small quark mass especially with a large additive constant coordinate space potential. We also show that 1m\frac{1}{m} corrections to heavy-light energy levels can be accurately computed with the reduced equation.Comment: Latex (uses epsf macro), 24 pages of text, 12 postscript figures included. Slightly revised version, to appear in Phys. Rev.

    Semileptonic B decays into excited charmed mesons from QCD sum rules

    Get PDF
    Exclusive semileptonic BB decays into excited charmed mesons are studied with QCD sum rules in the leading order of heavy quark effective theory. Two universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into four lowest lying excited DD mesons (D1D_1, D2D_2^*, D0D'_0, and D1D'_1) are determined. The decay rates and branching ratios for these processes are calculated.Comment: RevTeX, 17 pages including 2 figure
    corecore