4 research outputs found

    Swift monitoring of supergiant fast X-ray transients: The out-of-outburst behaviour and the flares from IGR J17544-2916 and XTE J1739-302

    No full text
    Supergiant Fast X-ray Transients (SFXTs) are a sub-class of High Mass X-ray Binaries (HMXBs) associated with OB supergiant companions and displaying transient X-ray activity. This behaviour is quite surprising since HMXBs hosting supergiants were known to be persistent sources, until the INTEGRAL discoveries obtained by means of the monitoring of the Galactic plane. We have been performing a monitoring campaign with Swift of four SFXTs with the main aim of characterizing both the long-term behaviour of these transients and the properties during bright outbursts. Here we discuss the properties of the X-ray emission observed outside the outbursts as well as the flares observed from two SFXTs: IGR J17544-2916 and XTE J1739-302. Contrarily to what previously thought, Swift allowed us to discover that SFXTs spend most of the time in accretion at a low level, even outside the bright outbursts, with an accretion luminosity of 1033-1034 erg s-1, and that the quiescent level ∼1032 erg s-1, is a much rarer state

    Two years of monitoring supergiant fast X-ray transients with Swift

    Full text link
    We present results based on 2 yr of intense Swift monitoring of three supergiant fast X-ray transients (SFXTs), IGR J16479−4514, XTE J1739−302 and IGR J17544−2619, which we started in 2007 October. Our out-of-outburst intensity-based X-ray (0.3–10 keV) spectroscopy yields absorbed power laws characterized by hard photon indices (Γ∼ 1 –2). The broad-band (0.3–150 keV) spectra of these sources, obtained while they were undergoing new outbursts observed during the second year of monitoring, can be fitted well with models typically used to describe the X-ray emission from accreting neutron stars in high-mass X-ray binaries. We obtain an assessment of how long each source spends in each state using a systematic monitoring with a sensitive instrument. By considering our monitoring as a casual sampling of the X-ray light curves, we can infer that the time these sources spend in bright outbursts is between 3 and 5 per cent of the total. The most probable X-ray flux for these sources is ∼(1 –2) × 10−11 erg cm−2 s−1 (2–10 keV, unabsorbed), corresponding to luminosities of the order of a few 1033 to a few 1034 erg s−1 (two orders of magnitude lower than the bright outbursts). In particular, the duty-cycle of inactivity is ∼19, 39 and 55 per cent (∼5 per cent uncertainty) for IGR J16479−4514, XTE J1739−302 and IGR J17544−2619, respectively. We present a complete list of BAT onboard detections, which further confirm the continued activity of these sources. This demonstrates that true quiescence is a rare state and that these transients accrete matter throughout their life at different rates. Variability in the X-ray flux is observed at all time-scales and intensity ranges we can probe. Superimposed on the day-to-day variability is intraday flaring, which involves flux variations up to one order of magnitude that can occur down to time-scales as short as ∼1 ks, and which can be naturally explained by the accretion of single clumps composing the donor wind with masses Mcl∼ (0.3 –2) × 1019 g. Thanks to the Swift observations, the general picture we obtain is that, despite individual differences, common X-ray characteristics of this class are now well defined, such as outburst lengths well in excess of hours, with a multiple peaked structure, and a high dynamic range (including bright outbursts), up to approximately four orders of magnitude

    Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

    No full text
    We provide an updated assessment of the power of the Cherenkov Telescope Array (CTA) to search for thermally produced dark matter at the TeV scale, via the associated gamma-ray signal from pair-annihilating dark matter particles in the region around the Galactic centre. We find that CTA will open a new window of discovery potential, significantly extending the range of robustly testable models given a standard cuspy profile of the dark matter density distribution. Importantly, even for a cored profile, the projected sensitivity of CTA will be sufficient to probe various well-motivated models of thermally produced dark matter at the TeV scale. This is due to CTA's unprecedented sensitivity, angular and energy resolutions, and the planned observational strategy. The survey of the inner Galaxy will cover a much larger region than corresponding previous observational campaigns with imaging atmospheric Cherenkov telescopes. CTA will map with unprecedented precision the large-scale diffuse emission in high-energy gamma rays, constituting a background for dark matter searches for which we adopt state-of-the-art models based on current data. Throughout our analysis, we use up-to-date event reconstruction Monte Carlo tools developed by the CTA consortium, and pay special attention to quantifying the level of instrumental systematic uncertainties, as well as background template systematic errors, required to probe thermally produced dark matter at these energies
    corecore